
    

 

 

 
Projet de Recherche (PRe) 

 

Spécialité : STIC 

Année scolaire : 2A 

 
Détection et Imitation de Mouvements 

Humains par un Robot Humanoïde 
Projet Keraal 

 

 
 

 

 

 

 

 

 

      Auteur : MA Ziqi   Promotion : 2023 

non confidentialité 

 



 

 

Tuteur ENSTA Paris : David FILLIAT 

Tuteur organisme d’accueil : Sao Mai NGUYEN 

 

 

 

Stage effectué du 20 /05 /2022 au 19/08 /2022 

 

                                        NOM de l’organisme d’accueil : ENSTA Paris 

                                        Adresse :  828 boulevard des Maréchaux, 

91162 Palaiseau Cedex - France 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 
 
 
 
 

 
 
 



        
Attestation de confidentialité / non confidentialité 

A remplir par l’entreprise d’accueil et à remettre à la bibliothèque de l’ENSTA Paris1 
 

Rapport de Projet de Recherche (PRe) 
 

 

 

Par la présente, je soussigné (e) Madame / Monsieur 2 NOM, Prénom  

…………………………………………Nguyen Sao Mai…. 

Employé(e) en tant que (qualité) ……Enseignante-chercheuse ..................................................................... 

dans la société  (NOM et ADRESSE de l’établissement) : ……Ensta Paris  ....................... 

Atteste sur l’honneur que LES DONNÉES contenues dans le rapport de  

Madame / Monsieur 错误!未定义书签。  NOM Prénom……Ziqi Ma………..  SONT: 

 

 CONFIDENTIELLES  

Par conséquent, l’entreprise (ou organisme) d’accueil S’ENGAGE A CONSERVER le rapport de stage pendant la Durée 
d’Utilité Administrative (DUA) soit 5 ans. 

 
A l’issue de la DUA, l’entreprise s’engage (cocher le choix correspondant) :   

 A conserver le document 
 A détruire le document 
 

 NON CONFIDENTIELLES (cocher le choix correspondant)  

 
 L’entreprise autorise une mise en ligne du rapport de stage (connexion via l’annuaire LDAP de l’école3). L’étudiant doit 

déposer son rapport sur BibNum - https://bibnum.ensta.fr - (archive institutionnelle de l’Ecole). 
 
 L’entreprise autorise un accès restreint au document (uniquement sur place et au format électronique). L’étudiant doit 

déposer son rapport sur BibNum - https://bibnum.ensta.fr - (archive institutionnelle de l’Ecole). 
 
Un rapport consultable uniquement sur place est stocké sur un PC non connecté au réseau et à internet. Les copies 
électroniques et imprimées ne sont pas autorisées. 

 

À …Palaiseau………… 

Le 08 /…08 /…2022…. 

Signature et cach

 
1 Possibilité de transmettre cette  attestation par mail  - à documentation@ensta-paris.fr –  si le document est confidentiel. Si le rapport est non 
confidentiel, elle devra être déposée  en même temps que le rapport sur https://bibnum.ensta.fr 
2 Rayer la mention inutile. 
3 La communauté ENSTA Paris, seule, aura accès au texte intégral. Les métadonnées (titre, auteur etc.) du rapport, en revanche, seront accessibles en 
ligne par tous. 



Détection et Imitation de Mouvements Humains par un Robot Humanoïde — Projet Keraal 

MA Ziqi / U2IS-ENSTA / 
 Rapport non confidentiel et non publiable sur internet 

4 

Remerciements 

 

Je tiens à remercier toutes les personnes qui ont contribué au succès de mon stage et qui 

m'ont aidé lors de la rédaction de ce rapport. 

Tout d'abord, j'adresse mes remerciements au professeur, M. Sébastien REYMOND de 

l'ENSTA. Il m'a beaucoup aidé dans ma recherche de stage et m'a proposé de postuler dans 

U2IS. Son écoute et ses conseils m'ont permis de cibler mes candidatures, et de trouver ce 

stage qui était en totale adéquation avec mes attentes. 

Je tiens à remercier vivement mon maitre de stage, Mme Sao Mai NGUYEN, chercheuse de 

l’Unité d'Informatique et d'Ingénierie des Systèmes(U2IS), pour son accueil, le temps 

passé ensemble et le partage de son expertise au quotidien. Grâce aussi à sa confiance j'ai pu 

m'accomplir totalement dans mes missions. 

Je tiens ensuite à remercier particulièrement M. Louis ANNABI, Post-doctorant de U2IS, 

pour l’attention et l’aide qu’il m’a apportées au quotidien pendant mon stage au sein d’U2IS. 

Il m’a enseigné beaucoup et m’a encouragé beaucoup. 

Je remercie également toute l'équipe U2IS pour leur accueil, leur esprit d'équipe et en 

particulier M. Thibault TORALBA et M. Philippe BAUMSTIMLER, qui m'ont beaucoup aidé 

à travailler avec le robot Poppy. 

Enfin, je tiens à remercier toutes les personnes qui m'ont conseillé et relu lors de la rédaction 

de ce rapport de stage : ma famille, mes amis Changda TIAN, Mengjun HOU, Yue WANG et 

mes camarades de promotion. 

 

 

 

 

 

 

 

 

 



Détection et Imitation de Mouvements Humains par un Robot Humanoïde — Projet Keraal 

MA Ziqi / U2IS-ENSTA / 
 Rapport non confidentiel et non publiable sur internet 

5 

Résumé 

Le projet Keraal a pour objectif le développement d’un robot kinésithérapeute appelé 
Poppy capable de « coacher » les patients durant leurs séances de rééducation. Notre travail 
est une partie du projet Keraal pour améliorer la capacité du robot Poppy. 

L’objectif de notre travail est de détecter et imiter des mouvements humains par le 
robot Poppy. Dans un premier temps, nous essayons le librairie Blazepose pour détecter des 
squelettes humains dans les vidéos collectées, et nous comparons les résultats avec ceux 
réalisées par la librairie Kinect, Openpose et Vicon et calculons les écarts. Nous choisissons 
la librairie Kinect comme la librairie le plus adaptée au travail d’imitation. 

Après avoir obtenu les mouvements humains, nous construisons un modèle 
d’apprentissage pour appliquer un re-ciblage de mouvements entre deux personnages. Nous 
testons le modèle sur les données d’animation viens de Mixamo. Il est dommage que le 
modèle ne soit pas performant, ainsi, nous analysons la raison et nous proposons des pistes 
de travail. 
 

Mots-clés: détection des squelettes, Blazepose, re-ciblage de mouvement, algorithme 
d’apprentissage 

 

 

Abstract 
The Keraal project aims to develop a physiotherapist robot called Poppy capable of 

“coaching” patients during their rehabilitation sessions. Our work is a part of the Keraal 
project to improve the capability of the Poppy robot.  

The objective of our work is to detect and imitate human movements by the Poppy 
robot. Firstly, we try the Blazepose library to detect human skeletons in the collected videos, 
and we compare the results with those made by the Kinect, Openpose and Vicon library and 
calculate the differences. We choose the Kinect library as the most suitable library for 
imitation work.  

After obtaining the human motions, we build a learning model to apply motion 
retargeting between two characters. We test the model on animation data from Mixamo. It is 
a pity that the model is not efficient, so we analyze the reason and we propose a method to 
improve.  
 

Keywords: Skeleton detection, Blazepose, motion retargeting, learning algorithm 
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Chapitre 1 - Introduction 

1.1 Introduction du projet Keraal 

Après un accident certains patients doivent réaliser des séances de rééducation 
fonctionnelle durant de longs mois afin de recouvrir leurs fonctionnalités musculaires. Une 
fois rentrés à leur domicile, la plupart d’entre eux ont des difficultés à poursuivre les 
exercices en toute autonomie, car ils perdent en motivation. Le projet Keraal a pour objectif 
le développement d’un robot kinésithérapeute appelé Poppy capable de « coacher » les 
patients durant leurs séances de rééducation. Il peut montrer des exercices de rééducation 
aux patients, regarder les mouvements du patient, les analyser et faire un retour en 
encourageant les patients. Notre travail est une partie du projet Keraal pour bien développer 
le robot Poppy. 

1.2 Descriptif du travail 

Notre mission lors de ce projet est alors d’améliorer les capacités du robot Poppy. 
Pour que Poppy soit capable de coacher les patients durant leurs séances de rééducation, il 
devrait avoir la capacité d’analyser les squelettes des patients. Dans notre travail, nous 
essayons certains algorithmes de détection des squelettes de l’humain, calculons-les écarts 
et comparons ses performances. Pour que le robot puisse faire une démonstration de 
l’exercice au patient, il faut entrainer le robot avec les exercices corrects. Dans notre travail, 
nous essayons d’appliquer un re-ciblage de mouvement qui peut transférer un mouvement 
humain au robot par un algorithme d’apprentissage par imitation. 

1.3 Description de contribution 

L’objectif de notre travail est de détecter et imiter des mouvements humains par le robot 
Poppy. Donc nous séparons le travail en trois étapes : 

1. Détecter les mouvements d’humain. 
2. Apprendre les mouvements humains par robot en utilisant la méthode re-ciblage 
3. Transférer un mouvement robotique en commande en utilisant le cinématique 

inverse spécifique. 
À cause de la limitation du temps, nous réalisons que deux premières étapes pendant le 

période du stage. 
Pour la première étape, les vidéos de mouvement humain sont données par Mai, il est 

suffisant de chercher et utiliser des algorithmes de détection. Nous écrivons toutes les 
détaillées dans le chapitre 2, ce qui contient la détection de pose humain par la librairie 
BlazePose, la comparaison entre les librairies Blazepose, Kinect, OpenPose et Vicon et le 
choix de la librairie la plus adaptée.  

Après cette étape, nous obtenons les données des mouvements humains et nous 
pouvons passer à l’étape suivante. Pour la deuxième étape, il faut trouver un algorithme 
d’apprentissage qui prend les mouvements humains et le squelette de robot comme entrée 
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et nous rend les mouvements robotiques comme sortie. En premier temps, nous trouvons 
les articles et les codes qui fait un re-ciblage de mouvement et nous essayons de transférer 
nos données des mouvements humains sous forme de ses entrées, mais nous avons obtenus 
de mauvais résultat avec leur modèle pré-entraîné car il ne se transfert pas correctement à 
nos données. Ainsi, nous abandonnons d’utiliser ses modèles directement. Par contre, en 
inspirant par ce que nous avons vu, nous essayons de construire notre modèle de re-ciblage 
de mouvement. Nous écrivons les idées sur notre modèle, la performance de notre modèle 
et comment nous rajustons le modèle dans le chapitre 3. 

Dans le chapitre 5, nous écrivons la conclusion. Un planning du stage est mis dans la 
section 1.4. 

1.4 Planning du Stage 

Planning du Stage - 20/05/2022 - 19/08/2022 

Indice Terme 
Date de 
début Date de Fin 

1 Détection de mouvement avec BlazePose 20/05/2022 29/05/2022 

2 Comparaison des écarts 24/05/2022 04/07/2022 

3 Travail sur les annotations de donnée Keraal 08/06/2022 16/06/2022 

4 Visualisation des mouvements 11/07/2022 13/07/2022 

5 Travail sur l'écran du Poppy 25/06/2022 30/06/2022 

6 Lire les articles sur l'imitation 13/06/2022 22/06/2022 

7 Étude le code dans l'article de [Aberman et al., 2020] 23/06/2022 19/08/2022 

8 Transforme le Kinect sous forme .bvh 29/06/2022 06/07/2022 

9 Télécharge les données Mixamo 07/07/2022 18/07/2022 

10 Traitement des données comme entrée 14/07/2022 22/07/2022 

11 Construction des grandes parties de model 19/07/2022 21/07/2022 

12 Construction de l'architecture global de réseau 21/07/2022 25/07/2022 

13 Entrainement du modèle 26/07/2022 19/07/2022 

14 Traitement des données de l'évaluation 03/08/2022 04/08/2022 

15 Évaluation 04/08/2022 18/08/2022 

16 Modification des paramètres du réseau 04/08/2022 18/08/2022 

17 Modification des réseaux 04/08/2022 18/08/2022 

18 Rapport final 21/07/2022 19/08/2022 
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Chapitre 2 – Détection de mouvements 

Cette section est dédiée à la détection de mouvement humain. Dans la section 2.1, 
nous décrivons comment utiliser la librairie BlazePose pour détecter le mouvement. Dans la 
section 2.2, nous écrivons la comparaison et les écarts entre l’algorithme BlazePose que nous 
utilisons, et les squelettes générés par Kinect, OpenPose et Vicon. Dans la section 2.3, nous 

analysons le résultat de la comparaison et choisissons la librairie la plus adaptée au travail 
suivant. Et dans la section 2.4, nous visualisons les mouvements détectés par quatre librairies. 

2.1 Traitement le squelette en utilisant le BlazePose 

Commençons tout d’abord par l’analyse d’une vidéo par l’algorithme BlazePose. Nous 
avons à notre disposition une petite base de données fournie par Mme Nguyen qui contient 
des vidéos d’exercices de kinésithérapie, dans un environnement idéal. Nous utilisons 
BlazePose pour obtenir le squelette associé dans chaque vidéo. Une fois exécuté sur chacune 
des vidéos, les informations de l’articulation sont alors stockées dans la variable 
POSE_LANDMARK et chaque point de repère se compose des éléments suivants : 

● x et y : coordonnées du point de repère normalisées à [0.0, 1.0] par la largeur et la 
hauteur de l'image respectivement. 

● z : Représente la profondeur du point de repère avec la profondeur au milieu des 
hanches comme origine, et plus la valeur est petite, plus le point de repère est proche 
de la caméra. La magnitude de z utilise à peu près la même échelle que x. 

● visibilité : une valeur dans [0.0, 1.0] indiquant la probabilité que le point de repère 
soit visible (présent et non occulté) dans l'image. 
L’ordre des articulations est indiqué dans la Fig. 1. 

 

Fig. 1: L’ordre des articulations pour le Blazepose. 

Pour chaque frame, nous ne traitons que les informations de x, y et z de l’articulation 
et nous les mettons dans un dictionnaire:  
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dic[“nom de landmark”] = (x, y, z) 
Pour chaque vidéo, nous mettons toutes les frames dans un grand dictionnaire, et 

nous les stockons sous format ‘.json’. Et voilà, maintenant nous avons toutes les informations 
associées aux squelettes générés par BlazePose. 

2.2 Comparaison des squelettes 

2.2.1 Blazepose, Openpose et Kinect 

Maintenant, il nous faut comparer le squelette obtenu aux autres squelettes. Tout 
d’abord, squelette de Openpose nous est donné par l'encadrant et utilise le modèle dans la 
Fig. 2. 

 

Fig. 2: L’ordre des articulations pour le Openpose. 

Un point de repère possède les caractéristiques suivantes: 
 x et y : coordonnées du point de repère normalisées à [0.0, 1.0] par la largeur et 

la hauteur de l'image respectivement. 
De même, le squelette de Kinect est donné par l’encadrant et possède la forme dans la 

Fig. 3. 
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Fig. 3: L’ordre des articulations pour le Kinect. 

Chaque point de repère se compose des caractéristiques suivantes: 
● x_pos, y_pos, z_pos, x_quat, y_quat, z_quat, w_quat dans le repère caméra, ce dont 

nous avons besoin, c’est le (x_pos, y_pos, z_pos).  
Pour faciliter la comparaison, nous transposons le repère de Blazepose et le repère de 

Kinect par rapport au repère de Openpose，et nous utilisons les relations correspondantes 

dans la Fig. 4. 

 

Fig. 4: Les relations correspondantes entre (a) Kinect et Openpose. (b) Blazepose et 
Openpose. 

Ainsi par exemple, le point 3 du squelette Kinect correspond au point 0 du squelette 
OpenPose. De même, le milieu des points 11 et 12 du squelette Blazepose correspond au 
point 1 du squelette OpenPose. 

Nous souhaitons maintenant réaliser la fonction d’écart entre les squelettes. Comme 
Blazepose et Openpose utilisent le repère de l’image, une simple relation de transfert sera 
suffisante pour la comparaison. L’écart se fait de manière immédiate par comparaison des 
positions sur l’image des points que nous considérons équivalent. 

Cependant nous observons un cas pathologique pour le squelette de la Kinect. En effet, 
les deux algorithmes ne sont pas basés sur le même repère, ce qui fait que nous ne pouvons 
pas les comparer directement. Nous devrons procéder à une transformation un peu plus 
élaborée.  

Pour changer le repère de Kinect par rapport au repère Openpose, Nous choissisons 
le point mShoulder comme point de référence et la distance de ‘mShoulder-Hip’ comme 
distance de référence dans chaque repère. Ainsi, afin de comparer la position de deux points 
équivalent des deux squelettes, nous comparons la distance de ces deux points par rapport 
au point de référence, et nous normalisons par rapport à la distance de référence. Nous 
obtenons alors une valeur dans [0;1] que nous pouvons comparer.  

Il suffit alors, pour chaque articulation, de calculer l’écart moyen et son écart-type 
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dans toutes les vidéos selon les relations de transfert décrites précédemment, et de mettre 
les données calculées de toutes les articulations pour toutes les vidéos dans un tableau. Nous 
traçons les courbes de toutes les articulations pour toutes les vidéos dans la section 2.3. 

2.2.2 Blazepose, Openpose, Kinect et Vicon 

Nous trouvons aussi dans le projet de Keraal, il y a aussi des squelettes de plusieurs 
participants traités par le Vicon, donc nous avons besoin d’ajouter les squelettes de Vicon 
dans la comparaison des écarts. Le squelette de Vicon est donné par l’encadrant et possède 
la forme dans la Fig. 5. 

 
Fig. 5: L’ordre des articulations pour le Vicon. 

Chaque point de repère se compose des caractéristiques suivantes: 
● x_pos, y_pos, z_pos, x_quat, y_quat, z_quat, w_quat dans le repère caméra, ce dont 

nous avons besoin, c’est le (x_pos, y_pos, z_pos). 
Nous constatons que les squelettes notés par Vicon sont différents que les trois premiers, il 
note les <forearm>, <Tigh> ou <Tibia> qui est une position entre deux articulations, nous 
pensons que ce sont les positions plus stables et plus précis et nous utilisons les articulations 
données par Vicon comme la vérité terrain. 
Nous transposons le repère de Blazepose, Kinect et Openpose par rapport au repère de Vicon, 
et nous utilisons les relations correspondantes dans la Fig. 6. 
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Fig. 6 : Les relations correspondantes entre (a) Blaze et Vicon. (b) Openpose et Vicon. (c) 
Kinect et Vicon. 

Le changement de repère est similaire à celui dans la section 2.2. Nous mettons aussi 
les résultats de comparaisons dans la section 2.4. 

 

2.3 Analyse des écarts et interprétation 

Nous avons effectué l’analyse des écarts sur trois types d’exercices: “cache tête”, 
“étirement latéral” et “rotation du tronc”. Les vidéos nous ont été fournies par Mme Nguyen. 
Pour chacun des exercices, nous avons plusieurs vidéos de deux catégories différentes : des 
exercices dit réussis par le patient et des exercices ratés par le patient. Nous ne nous 
intéressons pas particulièrement à cette distinction pour l’instant car nous souhaitons 
simplement obtenir l’écart entre les squelettes.  
Pour chaque type d’exercices et pour chaque type de squelettes, nous visualisons une partie 
en utilisant la librairie cv2 dans le Python, nous présentons le résultat dans la Fig. 7. 
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Fig. 7: Visualisation des mouvements. Le mouvement dans la première ligne est “cache tête”, 

dans la deuxième est “étirement latéral” et dans le troisième est “rotation du tronc”, 
les squelettes correspondants aux colonnes sont Blazepose, Openpose, Kinect et 
Vicon. 

 

 

Fig. 8: L’écart pour les articulations entre (b) Blazepose et Openpose. (c) Kinect et Openpose. 
(a) Blazepose et Kinect. 

Nous observons que le squelette obtenu via Blazepose est plus proche du squelette 
réalisé par Openpose que celui de Kinect. Quand nous comparons l’écart entre Blazepose et 
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Kinect, les écarts des points lAnkle, rAnkle, lKnee et rKnee sont très élevés comparé aux 
autres. Nous pensons que cela est dû au fait que tous les mouvements soient assis, il est alors 
plus difficile de détecter les articulations en bas, car les mouvements en bas sont moins étirés.  
Les comparaisons de trois méthodes avec la vérité terrain (Vicon) sont dans le Tab. 1. Il y a 
des ‘nan’ dans le tableau, c’est parce que Openpose ne note pas les notations sur les mains 
et les pieds. 

Tab. 1: Les comparaisons du Blazepose, Kinect et Openpose avec Vicon. 

Articulation 
Type de comparaison 

Blazepose - Vicon Kinect - Vicon Openpose - Vicon 

Right_Forearm 0.3102+-0.0694 0.3232+-0.0644 0.1423+-0.0387 

Left_Forearm 0.3290+-0.0884 0.1899+-0.0573 0.2490+-0.0742 

Right_Arm 0.2282+-0.0616 0.2788+-0.0442 0.0880+-0.0228 

Left_Arm 0.2931+-0.0571 0.1364+-0.0378 0.2425+-0.0458 

Chest 0.1368+-0.0198 0.1097+-0.0188 0.0799+-0.0093 

Right_Tigh 0.1611+-0.0332 0.0862+-0.0333 0.1510+-0.0369 

Left_Tigh 0.1036+-0.0372 0.1457+-0.0382 0.0666+-0.0514 

Right_Shoulder 0.2436+-0.0525 0.2456+-0.0381 0.1159+-0.0204 

Left_Shoulder 0.2802+-0.0429 0.1777+-0.0285 0.1937+-0.0179 

Right_Hand 0.4125+-0.0811 0.3731+-0.0848 nan+-nan 

Left_Hand 0.3914+-0.1423 0.2677+-0.0757 nan+-nan 

Right_Foot 0.3607+-0.0996 0.2078+-0.0866 nan+-nan 

Left_Foot 0.2800+-0.1132 0.3246+-0.0845 nan+-nan 

Head 0.4217+-0.0586 0.2913+-0.0423 0.2037+-0.0247 

Right_Tibia 0.2756+-0.0783 0.1308+-0.0800 0.2759+-0.0602 

Left_Tibia 0.1754+-0.0952 0.2532+-0.0668 0.1645+-0.0711 

Moyen 0.2752+-0.0706 0.2214+-0.0551 0.1644+-0.0395 

 

Nous constatons que la valeur moyenne de l’écart de Openpose est beaucoup plus petite que 
les deux autres, c’est parce que les end-effecteurs ont souvent plus de l’erreur que d’autre 
articulation, mais le Openpose ne mesure pas les end-effecteurs. Et puis, le Openpose ne 
mesure que deux dimensions au lieu de trois, ce qui peut aussi réduire l’écart de l’Openpose. 
Comme Openpose manque la dimension de profondeur pour les données, dans les étapes 
suivantes, nous ne considérons pas le Openpose. 

D’après le tableau, comme l’écart moyen du Kinect est plus petite que celle de 
Blazepose, nous pensons que Kinect performe mieux que les autres. Donc dans les 
expérimentations suivantes, nous utilisons les squelettes traités par le Kinect. 

Chapitre 3 Re-ciblage de mouvement basé sur 
les données 
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Après avoir fini les travaux sur la détection du mouvement, nous commençons les 
travaux sur l’apprentissage des mouvements humains par le robot Poppy. Nous étudions le 
re-ciblage de mouvement. L’objectif de cette partie est de construire un modèle qui peut 
apprendre des trajectoires d’un personnage par un autre personnage. Le squelette des deux 
personnages peut-être possède les structures différentes, mais ils sont topologiquement 
équivalents.  

Dans la section 3.1, nous écrivons les méthodes que nous avons étudiées sur le re-
ciblage de mouvement. Dans la section 3.2, nous construisons les opérateurs pour traiter les 
informations squelettiques, dans la section 3.3, nous construisons notre modèle, dans la 
section 3.4, nous faisons des expérimentations avec notre modèle et plus tester sa 
performance, dans la section 3.5, nous analysons la performance et nous décrivons comment 
nous rajustons le modèle. 

3.1 Travail relative 

Traditionnellement, le re-ciblage de mouvement est effectué en définissant 
manuellement une transformation entre deux morphologies différentes (par exemple, un 
acteur humain et un personnage d'animation). Cela nécessite de commencer par concevoir 
la fonction de pose dans le domaine de source, puis de trouver la pose correspondante dans 
le domaine cible. Le re-ciblage de mouvement basé sur les données a été utilisé pour changer 
le processus de transformation manuelle par des méthodes d'apprentissage automatique. 
Ces méthodes basées sur l'apprentissage bénéficient de flexibilité et d'évolutivité car elles 
réduisent le besoin d'une connaissance extensive du domaine et des processus de réglage 
fastidieux nécessaires pour définir correctement les caractéristiques de pose. 

Parmi tous les articles que nous avons vus, [Devanne et al., 2018] nous propose une 
méthode qui s'est appuyée sur des modèles de variables latentes à processus gaussien 
(GPLVM) pour construire des espaces latents partagés entre deux domaines de mouvement. 

L’article écrit par [Choi et al., 2021] nous présente un encodeur-décodeur pour faire 
le re-ciblage de mouvement. Il considère le fait que l’espace de mouvement du robot est 
souvent plus restreint que celui des humains, donc il construit un encodeur-décodeur entre 
l’espace de mouvement d’humain que peut faire par le robot (l’espace Q) et l’espace de 
mouvement de robot, et puis il crée une projection de tous les mouvements d’humain à 
l’espace Q (On l’appelle Projx dans la partie suivante). Son idée est illustrée dans la Fig. 9. 
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Fig. 9: L’idée de l’article dans [Choi et al., 2021]. 

Mais pour entrainer le modèle dans cette méthode, il utilise les données appariées 
sous une quantité de de 200,000 poses. N'ayant pas à notre disposition une telle base de 
données appariées humain-Poppy, nous cherchons d'autres méthodes. 

L’article [Aberman et al., 2020] nous offre une bonne inspiration. Dans son article, il 
voit un squelette de l’articulation comme une topologie de graphe, et traite les informations 
de pose avec des couches de convolution sur graphe et des couches de pooling sur graphe. 
En appliquant une couche de convolution graphe sur les données de pose, les auteurs 
associent à chaque articulation un ensemble de caractéristiques qui sont calculées à partir 
des caractéristiques des articulations voisines. En combinant ces couches avec des couches 
de convolution temporelles, ils construisent un encodeur et un décodeur permettant de 
traiter des trajectoires de poses. La structure de son modèle est dans la Fig. 10. 

 

Fig. 10: La structure de l’article [Aberman et al., 2020]. 

Leur méthode s'inspire de l'architecture CycleGAN, apprenant à transférer les données d'un 
domaine A à un domaine B sans utiliser de données appariées, en exploitant des 
discriminateurs coentraı̂nés sur chaque domaine. L'architecture proposée par [Aberman et 
al. 2020] permet d'apprendre à recibler des séquences de positions d'un domaine à un autre, 
en utilisant uniquement des données non-appariées. Cet atout majeur a fait de cet 
article notre principale source d'inspiration pour ce travail.  

3.2 Opérateurs du squelette 

En s'inspirant de l'article écrit par [Aberman et al., 2020], ainsi que de la littérature 
existante sur les Graph Neural Network, nous proposons un nouvel opérateur pour 
apprendre les informations profondes du squelette. Par la suite, nous décrivons le format de 
fichier employé pour décrire les mouvements du Mixamo utilisé par [Aberman et al., 2020], 
ainsi que les nouveaux opérateurs que nous avons définis pour traiter les séquences de poses. 

3.2.1 Représentation de mouvements 

Dans l'article [Aberman et al., 2020] dont nous nous inspirons, une séquence de 
mouvement de longueur T est décrite par une composante statique 𝑆 ∈ ℝ௃×𝒮 , et une 
composante dynamique 𝑄 ∈ ℝ் ×௃×𝒬  , où J est le nombre d'articulation, et S et Q sont les 
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dimensions de caractéristique statique et de caractéristique dynamiques, respectivement. En 
général, S = 3 pour les positions dans la direction de x, y et z. Q = 3 si on utilise les 3 angles 
de rotations par rapport aux axes x, y et z, ou Q = 4 les quaternions dans x, y, z et w. 

La composante statique S consiste en un ensemble de longueur d’os (vecteurs 3D), 
qui décrivent le squelette dans une pose initiale T, tandis que la composante dynamique Q 
spécifie les séquences temporelles de rotations de chaque articulation (par rapport au cadre 
de coordonnées de son parent dans la chaı̂ne cinématique), représenté par des quaternions 
unitaires. L'articulation racine 𝑅 ∈ ℝ் ×(𝒮ା𝒬) est représentée séparément des J armatures 
(ses enfants), comme une séquence de translations et de rotations globales. 

La structure du squelette est représentée par un graphe arborescent dont les nœuds 
correspondent aux articulations et aux effecteurs terminaux, tandis que les arêtes 
correspondent aux armatures, comme illustré sur la Fig. 11. Ainsi, pour un squelette à J 
armatures, le graphe a J+1 nœuds. La connectivité est déterminée par les chaı̂nes 
cinématiques (les chemins de l'articulation de racine aux effecteurs terminaux) et exprimée 
par des listes d'adjacence 𝑁ௗ  =  {𝑁ଵ

ௗ , 𝑁ଶ
ௗ , . . . , 𝑁௝

ௗ} , où 𝑁௜
ௗ   désigne les arêtes dont la 

distance dans l'arbre est égale ou inférieure à d à partir de la i-ième arête. 
Motivés par l'intuition que la manipulation de représentations de rotations sous 

forme de quaternions est compliquée pour un réseau de neurones [Xiang et al., 2020], nous 
proposons à la place d'utiliser les données de positions des articulations. Dans notre cas, 
nous posons S = 1 pour la longueur de l’armature et Q = 3 pour les positions de 
l’articulation par rapport au axes x, y et z. Dans la partie suivante, nous utilisons la 
notation L qui représente la longueur de l’armature et la notation P qui représente la 
position. 

 

Fig. 11: (a) Une représentation de T-pose du mouvement. (b) une structure de squelette pour 
la jambe en jaune. 

3.2.2 Opérateurs pour traiter les squelettes 
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Nous intégrons l’idée de Graph Neural Network dans notre architecture. Les noyaux de 
convolution considèrent la structure du squelette pour calculer les caractéristiques locales à 
travers les armatures. Pour construire un graphe, nous mettons les informations dynamiques 
dans les nœuds et mettons les informations statiques dans les arrêtes. Chaque frame de la 
séquence correspond à un graphe comme illustré dans la Fig. 12. 

Les données d'entrées sont organisées sous forme de graphe, avec les positions de chaque 
articulation comme caractéristiques de sommets (nous utilisons la notation P), et les 
longueurs des armatures comme caractéristiques d’arête (nous utilisons la notation L). Nous 
définissons deux opérateurs implémentant des convolutions sur graphe en tenant compte 
des informations de sommets et d'arêtes. En combinant ces deux opérateurs, nous obtenons 
une couche qui permet de mettre à jour les caractéristiques de chaque articulation en 
prenant en compte ses caractéristiques d'entrée, les caractéristiques des articulations 
voisines, ainsi que les caractéristiques des arêtes voisines. Ces opérateurs permettent donc 
de combiner et traiter de l'information de manière locale dans le graphe. Le traitement 
effectué par nos opérateurs est donné dans les équations suivantes: 

 Node2Edge : 𝐿෠௜ =  
ଵ

หே೔
೏หାଵ

ቄ∑ (𝑃௝ ∗ 𝑊௡௘௝
௜ + 𝑏௡௘௝

௜ ) + 𝐿௜  ∗ 𝑊௘௜
௜ + 𝑏௘௜

௜ ௝∈ே೔
೏ ቅ , où 𝑃௝ ∈ ℝ௃×௉ 

représente les informations de nœud voisin et 𝐿௜  ∈ ℝ௃×௅ représente lui-même. 

 Edge2Node : 𝑃෠௜ =  
ଵ

หே೔
೏หାଵ

ቄ∑ (𝐿௝ ∗ 𝑊௘௡௝
௜ + 𝑏௘௡௝

௜ )௝∈ே೔
೏ + 𝑃௜ ∗ 𝑊௡௜

௜ + 𝑏௡௜
௜ቅ , où 𝐿௝  ∈ ℝ௃×௅  

représente les informations d’arête voisine et 𝑃௜ ∈ ℝ௃×௉ représente lui-même. 

Les sommets et les arêtes partagent la même matrice de connectivité 𝑁ௗ   et 𝑁௜
ௗ  

représente la connectivité correspond au i-ième sommet, ce qui nous permet d’appliquer de 
manière récursive la convolution squelettique aux séquences de mouvement. Une explication 
dans la Fig. 12 peut-être plus claire. 

 

Fig. 12: La représentation de l’humain et les opérateurs Node2Edge et Edge2Node. La couche 
Node2Edge met à jour les caractéristiques d’une armature en s’aidant des 
caractéristiques des articulations voisines. La couche Edge2Node met à jour les 
caractéristiques d’une articulation en s’aidant des caractéristiques des armatures 
voisines. 

En utilisant les deux opérateurs décrits avant, nous construisons un module GNN. 
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Nous traçons la structure du module GNN dans la Fig. 13. Nous donnons les données 
statiques et dynamiques comme entrée à la couche de Node2Edge, et nous obtenons les 
caractéristiques statiques, en passant les caractéristiques statiques et les données 
dynamiques à la couche de Edge2Node, les caractéristiques dynamiques sont obtenues. Les 
sorties après ce module sont les caractéristiques statiques et dynamiques Nous pensons 
qu’avec ce module, après la couche Node2Edge, les données dynamiques peuvent influencer 
sur les caractéristiques statiques, et après la couche Edge2Node, les caractéristiques 
dynamiques peuvent aussi influencer sur les caractéristiques statiques. Nous pensons que 
ce module est capable de faire un échange de caractéristique entre les données 
dynamiques et les données statiques, ce qui peut traiter les informations profondes et 
invariantes pour une suite de trajectoire. 

 
Fig. 13: La structure de couche GNN. 

3.3 Modèle 

Dans cette partie, nous écrivons les modules que nous concevons pour traiter les 
trajectoires et l’architecture global du modèle. 

3.3.1 Descriptif mathématique du problème 

Nous formulons le re-ciblage de mouvement comme une tâche de traduction de 
domaine non apparié. Plus précisément, nous laissons ℳ஺ et ℳ஻  désigner deux domaines 
de mouvement, où les mouvements dans chaque domaine sont effectués par des squelettes 
avec la même structure squelettique, mais peuvent avoir des longueurs et des proportions 
d'os différentes (𝐿஺  et 𝐿஻ , respectivement). Cette situation s'adapte aux ensembles de 
données Mixamo publics existants, où chaque ensemble de données contient différents 
personnages qui partagent la structure squelettique et effectuent divers mouvements. Nous 
supposons qu'il existe un homéomorphisme entre les structures squelettiques de 𝐿஺ et 𝐿஻. 
Notons que les domaines ne sont pas appariés, ce qui signifie qu'il n'y a pas de paires 
explicites de mouvements dans les deux domaines. 

Supposons que chaque mouvement 𝑖 ∈  ℳ஺  soit représenté par le couple (𝐿஺, 𝑃஺
௜) , 
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où 𝐿஺  ∈  𝒮  est l'ensemble des longueurs des os du squelette et 𝑃஺
௜   sont les positions 

articulaires, dans notre situation. EƵ tant donné les longueurs des os d'un squelette cible 𝐿஻  ∈

 𝒮 , notre objectif est de mapper (𝐿஺, 𝑃஺
௜ )  dans un ensemble reciblé de position 𝑃஻

௜   qui 
décrivent le mouvement tel qu'il devrait être effectué par 𝐿஻. Formellement, on cherche une 
application pilotée par les données 𝐺஺→஻ : 

𝐺஺→஻൫(𝐿஺, 𝑃஺
௜) ∈  ℳ஺ , 𝐿஻  ∈  𝒮൯ →  (𝐿஻, 𝑃஻

௜ )  

3.3.2 Structure des modules 

Nous concevons trois modules, un encodeur, un décodeur et un discriminateur. Nous 
les présentons dans la Fig. 14. L’idée de construction de module est d’effectuer des 
convolutions squelettiques-temporelles en alternant des couches de GNN et des couches de 
convolution temporelle (1d). 

L’encodeur se compose de trois couches, une couche de Conv1d, une couche de GNN 
et une couche de Conv1d séparément. La fonction d’activation pour tous les couches est 
LeakyReLU. La couche de Conv1d est utilisée pour condenser les informations selon l’axe 
temporel, et après cette action, les données condensées sont passées dans le GNN pour 
obtenir les informations profondes.  

Le décodeur se compose aussi de trois couches, la première couche est une couche de 
Upsample qui sert à augmenter artificiellement la longueur de la séquence sans paramètres 
apprenables. Et puis, nous utilisons une couche de GNN pour faire un échange entre données 
statiques et dynamiques. En fin, nous utilisons une couche de ConvTranspose1d qui ont un 
fonctionnement opposé que la Conv1d, c’est pour étirer les informations selon l’axe temporel.  

Le discriminateur a la même structure que l’encodeur, et nous ajoutons des couches 
linéaires à la fin, pour que sa sortie soit un scalaire correspondant au score estimé par le 
discriminateur. 
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Fig. 14: (a) La structure de l’encodeur (b) La structure du décodeur (c) La structure du 
discriminateur. 

3.3.3 Architecture du réseau 

Nous utilisons les trois modules principaux et construisons l’architecture global. Nous 
réalisons deux architectures globales, une vue de niveau supérieur du flux d'informations 
dans notre architecture présente dans la Fig. 15 et la Fig. 16. Comme le premier est inspiré 
par l’article de [Aberman et al., 2020] (Fig. 15) et le deuxième a une architecture comme le 
Cycle-GAN (Fig. 16), on les appelle réseau d’encodeur décodeur et réseau cycle. Les deux 
encodeurs et deux décodeurs dans tous architectures sont les mêmes, nous avons besoin 
d’entraı̂ner des modules généraux. Après avoir formé les composants susmentionnés, la 
transformation souhaitée 𝐺஺ → ஻ est obtenue, au moment du test, en utilisant le décodeur 
pour combiner la représentation dynamique du mouvement produite par encodeur et A avec 
la représentation statique du B, comme illustré à la Fig. 15(b)et à la Fig. 16(b). 

Et puis, nous décrivons les différentes fonctions de coût utilisées pour entraı̂ner notre 
réseau, elles sont également illustrées à la Fig. 15(a) et Fig. 16(a). Pour simplifier, nous 

notons les caractéristiques dynamiques codées par 𝑃෨஻
௜ = 𝐷(𝐸൫𝑃஺

௜ , 𝐿஺൯, 𝐿஻). 

 

Fig. 15: L’architecture global de réseau d’encodeur décodeur, (a) est pour entraı̂ner le 
modèle, (b) est pour tester le modèle. 
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Fig. 16: L’architecture global de réseau cycle, (a) est pour entraı̂ner le modèle, (b) est pour 
tester le modèle. 

 Coût de reconstruction. Pour former un auto-encodeur (𝐸, 𝐷) pour les mouvements, 
nous utilisons un coût de reconstruction standard sur les positions articulaires : 

ℒ௥௘௖ = ቐ

𝔼
(௅ಲ,௉ಲ

೔ ) ∈ ℳಲ
ൣฮ𝐷൫𝐸൫𝑃෨஻

௜ , 𝐿஻൯, 𝐿஺൯ − 𝑃஺
௜ฮ൧                                               𝑟é𝑠𝑒𝑎𝑢 𝑐𝑦𝑐𝑙𝑒

 
𝔼

(௅ಲ,௉ಲ
೔ ) ∈ ℳಲ

ൣฮ𝐷൫𝐸൫𝑃஺
௜ , 𝐿஺൯, 𝐿஺൯ − 𝑃஺

௜ฮ൧                   𝑟é𝑠𝑒𝑎𝑢 𝑒𝑛𝑐𝑜𝑑𝑒𝑢𝑟 𝑑é𝑐𝑜𝑑𝑒𝑢𝑟
  

 Coût de cohérence latente. L'intégration d'échantillons de différents domaines dans un 
espace latent partagé s'est avérée efficace pour les tâches de traduction d'images 
multimodales [Gonzalez-Garcia et al. 2018 ; Huang et al. 2018]. Des contraintes peuvent 
être appliquées directement sur cette représentation intermédiaire, facilitant le 
décodage. Inspirés par cela, nous appliquons un coût de cohérence latente à la 

représentation partagée pour garantir que le mouvement reciblé 𝑃஻
௜   conserve les 

mêmes caractéristiques dynamiques que le clip d'origine : 

ℒ௟௔௧௘௡௧ =  𝔼
(௅ಲ,௉ಲ

೔ ) ∈ ℳಲ
ൣฮ𝐸൫𝑃஺

௜ , 𝐿஺൯ − 𝐸൫𝑃෨஻
௜ , 𝐿஻൯ฮ൧ 

 Coût antagoniste. EƵ tant donné que nos données ne sont pas appariées, le mouvement 
reciblé n'a aucune vérité de terrain à comparer. Ainsi, nous utilisons un coût 
contradictoire, où un discriminateur 𝐷  évalue si l'ensemble temporel décodé des 

positions 𝑃஻
௜  semble être un mouvement plausible pour le squelette 𝑆஻ : 

ℒ௔௡௧ =  𝔼௜ ∈ ℳಲ
ቂฮ𝐷൫𝑃෨஻

௜ , 𝐿஻൯ฮ
ଶ

ቃ + 𝔼௝ ∈ ℳಳ
ቂฮ1 − 𝐷൫𝑃஻

௝
, 𝐿஻൯ฮ

ଶ
ቃ 

Comme dans d'autres réseaux antagonistes génératifs, le discriminateur 𝐷 est formé en 
utilisant les mouvements dans ℳ஻   comme exemples réels, et la sortie de 𝐺஺→஻ 
comme faux. 

Le coût total utilisée pour la formation combine les termes de coût ci-dessus : 

ℒ = 𝜆௥௘௖ℒ௥௘௖ + 𝜆௟௔௧௘௡௧ℒ௟௔௧௘௡௧ + 𝜆௔௡௧ℒ௔௡௧ 

Où 𝜆௥௘௖ = 10, 𝜆௟௔௧௘௡௧ = 1, 𝜆௔௡௧ = 1 dans le réseau cycle et 𝜆௥௘௖ = 10, 𝜆௟௔௧௘௡௧ = 4, 𝜆௔௡௧ = 1 
dans le réseau d’encodeur décodeur. 

3.4 Expérimentation et Évaluation 

3.4.1 Implémentation détaillée 

Notre réseau de traitement de mouvement est implémenté dans PyTorch, et les 
expériences sont réalisées sur un serveur équipé d'un GPU NVIDIA GeForce et un processeur 
Intel(R) Xeon(R) E5-2603 v3 et les tests sont réalisées sur un PC d'un processeur Intel(R) 
Core(TM) i7-10710U/1.1GHz (16 Go de RAM). Nous optimisons les paramètres de notre 
réseau, avec le terme de coût dans la section 3.3.3, en utilisant l'optimiseur Adam.  
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Afin d'évaluer notre méthode, nous construisons un jeu de données avec 2400 
séquences de mouvements, réalisées par 25 personnages distincts, de la collection de 
personnages Mixamo 3D. Pour chaque mouvement, nous choisissons au hasard un seul 
personnage pour l'exécuter, pour s'assurer que notre jeu de données ne contient pas de 
paires de mouvement. De plus, pour permettre la formation du réseau par lots, les 
mouvements sont découpés en fenêtres temporelles fixes avec T = 64 images chacune. Nous 
calculons la longueur de l’armature et calculons la position absolue en utilisant les 
longueurs d’os et les rotations par axe, et nous les divisons par la hauteur de personnage 
comme une façons de normalisation. Le premier est utilisé comme l’information statique 
et le deuxième est utilisé comme l’information dynamique. Notre entrainons chaque 
architecture par 50,000 époques. 

3.4.2 Évaluation 

Pour bien comparer, nous construirons un ensemble de test par 107 mouvements et 
4 personnages. Les mouvements et les personnages n’ont jamais été vus par le réseau 
pendant l’entraı̂nement. Chaque mouvement est réalisé par 4 personnages. Ainsi, l’ensemble 
de test contient 428 séquences en total.  
Nous présentons une évaluation quantitative de nos méthodes décrites ci-dessus. Les erreurs 
sont mesurées en effectuant un re-ciblage sur les données appairées dans l'ensemble de test 
et en les comparant à la vérité terrain, disponible à partir de l'ensemble de données Mixamo 
d'origine. Nous calculons l'erreur de re-ciblage de chaque squelette k, par rapport à tous les 
autres dans l'ensemble de test C, comme la distance moyenne entre les positions articulaires, 
qui est donnée par : 

𝐸௞ =
1

𝑁 × 𝐽 × (|𝐶| − 1)
 ෍ ෍ ෍ ฮ𝑃෨௜௞,௖

௝
− 𝑃௜௞

௝
ฮ

௃

௝ୀଵ

ே

௜ୀଵ
௖∈஼,   ௖ஷ௞

 

Où 𝑃෨௜௞,௖
௝  désigne la j-ième position articulaire de la séquence de mouvement reciblée 

i qui est exécutée par le squelette c et transférée au squelette k, et 𝑃௜௞
௝  est la vérité terrain. 

L'erreur finale est calculée en faisant la moyenne des erreurs 𝑬𝒌  pour tous les 
squelettes 𝒌 ∈ 𝑪. Nous présentons le résultat dans le Tab. 2. 

Tab. 2: L’évaluation de réseau cycle et réseau d’encodeur décodeur 

Réseau type Erreur 

Réseau cycle 0.1564 

Réseau d’encodeur décodeur 0.085 

 

3.4.3 Analyse 
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Fig. 17: Le coût pour le réseau cycle 

 
Fig. 18 : Le coût pour le réseau encodeur décodeur 

Nous présentons le coût évolué pendant l’entraı̂nement dans la Fig. 17 et la Fig. 18. Le 
générateur de deux réseaux convergent vers une valeur très proche de 1. Mais nous 
constatons que le coût de reconstruction de réseau cycle converge vers un ordre de grandeur 
10ିଶ , celui de réseau d’encodeur décodeur converge vers un ordre de grandeur 10ିସ. Ce qui 
peut expliquer une meilleure performance de réseau d’encodeur décodeur dans le Tab. 2, il 
est évident que le réseau encodeur décodeur apprendre plus d’information viens des 
données. Et puis, nous choisissons une séquence dans l’ensemble de test et nous traçons un 
frame pour bien comparer et analyser. (Fig. 19 et Fig. 20) 

 

Fig. 19: Le réseau cycle (a) comparaison entre reconstruction et sa vérité terrain. (b) 
comparaison entre re-ciblage et sa vérité terrain. (c) comparaison entre la 
reconstruction et le re-ciblage. 

 



Détection et Imitation de Mouvements Humains par un Robot Humanoïde — Projet Keraal 

MA Ziqi / U2IS-ENSTA / 
 Rapport non confidentiel et non publiable sur internet 

29 

 

Fig. 20: Le réseau d’encodeur décodeur (a) comparaison entre reconstruction et sa vérité 
terrain. (b) comparaison entre re-ciblage et sa vérité terrain. (c) comparaison entre la 
reconstruction et le re-ciblage. 

Avec les visualisations des squelettes, nous constatons que le réseau encodeur 
décodeur performe mieux que le réseau cycle, il peut construire l’architecture globale 
pour un personnage, et nous pouvons voir une différence entre la reconstruction et le re-
ciblage, c’est-à-dire que le décodeur considère les données statiques pour construire un 
squelette d’humain. Mais pour le réseau cycle, il y a une superposition entre la reconstruction 
et le re-ciblage, c’est-à-dire que le décodeur ne pris jamais en compte les informations sur 
les données statiques. La raison pour la différence est, afin d’obtenir la reconstruction finale, 
les données doivent passer deux encodeurs et deux décodeurs dans le réseau cycle mais ils 
ne passent qu’un encodeur et un décodeur dans le réseau encodeur décodeur. Ce qui donne 
plus de difficultés pour le réseau cycle d’apprendre les paramètres en utilisant la même 
fonction de coût. 

Au contraire, même si le résultat vient du réseau encodeur et décodeur, il n’est pas 
satisfaisant comme prévu. Nous constatons que le coût de générateur ne converge pas ver 0, 
et le coût de discriminateur converge toujours vers 1. C’est-à-dire que même si dans le réseau 
d’encodeur-décodeur, le générateur n’est pas bien entrainé, le mouvement viens de 
générateur ne peut pas tromper le discriminateur. Nous pensons que les réseaux ont un 
gros problème de prendre en compte des données statiques pour prédire. Dans l’étape 
suivante, Il faut que nous continuions à améliorer le générateur.  
Nous présentons un re-ciblage de mouvement obtenue par la méthode dans l’article 
[Aberman et al., 2020] (la Fig. 21) 
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Fig. 21: Le re-ciblage dans l’article [Aberman et al., 2020]. Le jaune est l’entrée, le vert est la 
vérité terrain, le bleu est le résultat de re-ciblage 

Dans leur méthode, ils utilisent les poses par défaut des personnages comme les 
caractéristiques statiques et les quaternions de chaque articulation (relatif à la pose par 
défaut) comme les caractéristiques dynamiques, et ils sont donnés au réseau comme entrée. 
Et les sorties de son réseau sont des quaternions. Après ils recalculent la position globale par 
la cinématique directe en utilisant les pose par défaut qui est déjà connus et les quaternions 
obtenus.  

Nous pensons qu’une tellement de différence de performances entre notre méthode 
et [Aberman et al., 2020], c’est parce que si nous utilisons les positions comme entrée, le 
réseau doit changer beaucoup entre l’entrée et sortie, mais si nous utilisons les quaternions 
comme entrée, comme les décalages sont déjà connus, le réseau neurone n’a que besoin de 
régler finement sur les quaternions. Il est évident que la deuxième opération est beaucoup 
plus facile que le premier pour le réseau à apprendre. 

Mais en réalité, En analysant le réseau pré-entraı̂né fourni dans leur article, nous 
observons que le décodeur appris n'utilise pas les données statiques pour prédire les 
rotations en sortie. En réalité, leur encodeur décodeur réalise une fonction identité, et leurs 
résultats visuels sont dus au fait qu'ils utilisent la cinématique directe avec les données 
statiques du squelette B pour leur reconstruction. Leur modèle a le même problème que 
nos. 

3.5 Discussion 

3.5.1 Modification sur le modèle 

Nous modifions le modèle beaucoup pour qu’ils ont une structure comme nous avons 
présenté. En premier temps, l’encoder et le décodeur ont une couche de 5 et ont presque la 
même structure (voir la Fig. 25 dans l’annexe). 

 Changement 1 : Tout d’abord, la fonction d’activation que nous utilisons est la ReLU 
même si après la dernière couche de l‘encodeur, le décodeur et le discriminateur, cette 
fonction transfert tous les valeurs négatives aux constant 0. Alors, pour la sortie du 
décodeur ou la sortie du discriminateur, il faut que les valeurs puissent être négatives. 
En considérant cette raison, nous choisissons la LeakyReLU au lieu de ReLU. Une 
évolution de coût est présentée dans la Fig. 21, nous constatons qu’avec l’activation ReLU, 
le coût converge vers un ordre de grandeur 10ିଶ , mais le coût converge vers 10ିସ , en 
utilisant l’activation LeakyReLU. 
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Fig. 22: EƵ volution de coût (a) la fonction d’activation ReLU. (b) la fonction d’activation 
LeakyReLU. 

 Changement 2 : Après, nous relance le modèle beaucoup de fois et nous trouvons que le 
coût de discriminateur évolue toujours vers 0, mais le coût de générateur évolue toujours 
1. Nous pensons que c’est parce que le discriminateur est beaucoup plus fort que le 
générateur. Donc nous modifions la façon de mettre à jour, une mise à jour de 
discriminateur cinq fois moins fréquente que le générateur. 

 Changement 3 : Et puis, nous constatons aussi les coûts de générateur, nous trouvons 
qu’il évolue toujours vers 1, nous pensons que peut-être notre réseau est trop profond, 
le décodeur n’est pas capable de décodeur les informations dans l’espace latent, donc 
nous enlevons une couche de GNN et une couche de convolution dans l’encodeur 
et le décodeur. Nous pensons que le réseau moins profond pourrait mieux converger. 

 Changement 4 : Après ce change, nous trouvons que la reconstruction et le re-ciblage 
sont encore superposés, ce qui nous confusions beaucoup, après avoir vérifié le réseau, 
nous pensons que c’est le décodeur qui a plus de problème. Les données que nous 
donnons aux décodeurs sont l’espace latent et les longueurs des armatures. Mais les 
sorties de décodeur sont les mêmes, c’est parce que le décodeur ne considère pas les 
décalages. Pour améliorer cette situation, nous changeons la première couche de 
ConvTranspose1D par la couche de Upsample. Et nous initialisons les paramètres 
des arrêts dans le GNN dix fois plus grande qu’avant. Toutes les opérations ont un 
objectif d’augmenter les influences sur les décalages pour le décodeur. 

Nous choisissons le réseau d’encodeur décodeur comme exemple. Après chaque 
modification, nous relance l’entrainement, et nous notons les performances de l’évaluation. 
Les performances sont dans le Tab. 1Tab. 3. 

Tab. 3: L’évaluation pour toutes les modifications sur le réseau d’encodeur décodeur 

État Erreur 

Au début 1.8674 

Changement 1 : ReLU par LeakyReLU 0.1291 

Changement 2 : la façon de mis à jour 0.0894 

Changement 3 : Minimise couche 0.0723 

Changement 4  0.085 
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3.5.2 Travail au futur 

Nous pensons qu’il y aura deux façons pour améliorer notre réseau, soit nous changeons la 
forme d’entrée qui est les quaternions au lieu de positions, soit nous utilisons les données 
appairés pour entrainer le réseau. Nous vérifions un peu la deuxième méthode en 
construisant un encodeur et décodeur présenté dans la Fig. 23.  

 

Fig. 23: Un petit réseau 

Nous entraı̂nons ce réseau sur un base de données de cent trajectoires présentées par quatre 
personnages. Après, nous testons sur ① des mouvements inconnus, des personnages 
connues, ② des mouvements inconnus, des personnages inconnues, ③ des mouvements 
connus, des personnages inconnues pendant l’entraı̂nement. Les performances est présenté 
dans le Tab. 4 en utilisant le critère d’évaluation dans la section 3.4.2. 

Tab. 4:  L’évaluation de petit réseau cycle 

Réseau Petit Erreur 

① Squelette vu, mouvement non vu 0.0293 

② Squelette non vu, mouvement non vu 0.0398 

③ Squelette non vu, mouvement vu 0.0421 

 

Nous traçons quelques frames pour le test ① dans la Fig. 24. 

 

Fig. 24: Le résultat de re-ciblage avec donnée appairée 

Nous constatons qu’avec des données appairées, le re-ciblage est beaucoup plus 
mieux que notre réseau. Et le décodeur prend en compte bien des données statiques. Mais 
d’après le Tab. 4, nous trouvons que la performance pour les squelettes non vus est moins 
bien que les squelettes vus, c’est-à-dire qu’il faut ajouter plus de type de squelettes dans 
l’ensemble d’entraı̂nement pour améliorer la capacité de génération au futur. 

Au futur, nous pourrons travailler plus sur cette direction. 

Chapitre 4 Conclusion 
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L’objectif de notre travail est de détecter et imiter des mouvements humains par le 
robot Poppy. Et nous faisons le travail en deux parties: 

Dans la première partie, nous cherchons une librairie de détection de pose – 
Blazepose, et traiter les vidéos de mouvement humain données par Mai. Et puis, nous 
comparons la pose détectée par les librairies Blazepose, Kinect, OpenPose et Vicon et nous 
pensons que la librairie Kinect est la plus adaptée aux taches de re-ciblage de mouvement 
humain à robot. 

Dans la deuxième partie, nous concevons notre modèle de re-ciblage de mouvement 
avec les données non-appairées, nous proposons les opérateurs GNN pour traiter la 
structure squelettique, et puis nous l’utilisons pour construisons la partie principale du 
réseau, un encodeur, un décodeur et un discriminateur. Après nous utilisons trois parties et 
construisons deux architectures : un architecture cycle et une architecture d’encodeur 
décodeur. Après avoir évalué les deux réseaux, nous pensons que le réseau encodeur 
décodeur performe mieux que le réseau cycle mais le générateur dans le réseau encodeur 
décodeur est encore mauvais. Nous expliquons la raison pour laquelle qu’ils ne fonctionnent 
pas bien. En fin, nous proposons que les travaux au futur soient nous utilisons les données 
appairées, soient nous utilisons les quaternions comme entrées. 
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Annexes 

 
Fig. 25: (a) La structure de l’encodeur (b) La structure du décodeur (c) La structure du 

discriminateur 


