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Abstract

Emergent symbolic representations are critical for enabling developmental learning agents to plan and generalize
across tasks. In this work, we investigate whether large language models (LLMs) can translate human natural
language instructions into the internal symbolic representations that emerge during hierarchical reinforcement
learning. We apply a structured evaluation framework to measure the translation performance of commonly
seen LLMs — GPT, Claude, Deepseek and Grok — across different internal symbolic partitions generated by a
hierarchical reinforcement learning algorithm in the Ant Maze and Ant Fall environments. Our findings reveal
that although LLMs demonstrate some ability to translate natural language into a symbolic representation of
the environment dynamics, their performance is highly sensitive to partition granularity and task complexity.
The results expose limitations in current LLMs capacity for representation alignment, highlighting the need for
further research on robust alignment between language and internal agent representations.
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1. Introduction

Emergent symbolic representation refers to the spontaneous development of internal symbols or abstract
concepts within a learning agent, without explicit pre-programming of those symbols but during
learning processes that involve interaction with the environment, such as reinforcement learning (RL)
or human-in-the-loop learning paradigms [1]. While most works have focused on symbol emergence
for primitive actions, few works have investigated for long-horizon actions, whether the emergent
symbols [2, 3] are aligned with human representations. “Symbol emergence is a critical concept for
understanding and creating cognitive developmental systems that are capable of behaving adaptively
in the real world and that can communicate with people”, as highlighted in [4]. The authors in [5] have
demonstrated that language instructions can be integrated with emergent symbolic representations of
an RL agent in a end-to-end manner. In this work, we investigate the importance of emergent symbols
in developmental learning agents to communicate with people. How do these two sets of symbols that
have a prior different representations align? What can be used to bridge the gap between internal
symbols of developmental learners and natural language symbols used by human instructors?

Large Language Models (LLMs) have emerged as a powerful tool in natural language processing,
demonstrating remarkable capabilities in understanding and generating human language [6] and to
encode common-sense knowledge. They have become advanced artificial intelligence systems capable
of understanding [7], generating, and generalizing text across various tasks [8, 9]. Recently, LLMs have
shown reasoning and inferring capacity [10, 11], which improve the agent decision-making ability.
While the research community has investigated the ability of LLMs to understand human language, it
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Figure 1: (a)(d) Environments, (b)(e) Average success rate of STAR (from [13]), (c)(f) Partition into regions of
STAR, in respectively Ant Maze and Ant Fall. The regions in (c)(f) are the internal representation emerging
during the training at timestamps noted in (b) and (e). The red point represents the initial position of the robot
while the yellow point represents the goal position. Our LLM-based system translates instructions to guide the
robot (such as "go east to the end, turn north until past the wall and go west until the end"), into a sequence of
traversed regions (for Partition Il of AntMaze, the outputis5 — 11 — 2 — 3 — 4).

has overlooked investigating the ability of LLMs to understand agent "language" which is the internal
state representation of an agent during the learning process, and the ability of LLMs in aligning the
internal representation of humans and the internal representation of an artificial learning agent of
the same environment. In our paper, we focus on the following question: for an emergent symbolic
representation in developmental learning agents, can LLMs translate human instructions from natural
language into the internal representation of the agent? In order to explore the question, we analyze
the performance of LLMs to align human instructions in natural language with the dynamic symbolic
representation developed by a reinforcement learning agent. Our work is based on the hierarchical
reinforcement learning algorithm Spatio-Temporal Abstraction Via Reachability (STAR)[12], which was
shown to learn a symbolic representation of the state space [2] grounded on its environments. The
main contributions of our paper are:

« We show that LLMs can be a tool to translate human natural language instructions into the
internal representation of STAR during its learning process.

+ We show that the capacity of LLMs to align two different representations is limited due to the fact
that they do not fully leverage the internal representation learned by the developmental agent.

We state the preliminary of our research in section 2, propose the method in section 3, and describe
the implementation details in section 4. Then, we design the experiments and analyze the results in
section 5. Finally, we discuss the result and give our conclusion in section 6 and section 7.

2. Preliminary

We base our work on running STAR at Ant Maze[14] and Ant Fall[15] tasks. STAR is a 3-layers
Hierarchical Reinforcement Learning algorithm aiming to solve long-horizon tasks: the high-level
agent selects regions in an abstract goal space, the middle-level agent selects concrete subgoals that aid
in achieving abstract goals, and the low-level agent learns to take action in the environment. STAR
automatically discovers discrete symbolic representations of environment by grouping states with
similar reachability properties into symbolic goal regions and allowing incremental refinement. The
abstract symbols evolve over time as new experiences improve the learned representation. When
running STAR on one task, a set of internal symbolic representation data S = {s1, S, ..., SN } emerges.
Based on the mechanism of STAR, s; represents a set of emergent internal symbols that align with
environment dynamics, and the s;1 is built on the top of s;.
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We collect the symbolic partitions that emerge during the execution of the STAR algorithm on the Ant
Maze and Ant Fall environments, as illustrated in Fig. 1(a) and (d). The Ant Maze environment features
a quadrupedal robotic agent navigating through a “>”-shaped corridor toward a fixed goal location,
and the Ant Fall task simulates an environment where the robot is initially placed on a raised platform
separated by a pit from its target. The agent must learn that it needs to navigate to the movable block,
push it into the pit to form a bridge, and then cross the gap to reach the target. During the training
process, STAR incrementally refines its symbolic representation. To analyze LLM performance across
different levels of abstraction, we select four representative partitions from different developmental
learning stages, as shown in Fig.1(c) and (f). Their corresponding positions are also marked along the
training curves in Fig.1(b) and (e). Partition I corresponds to the initialization partition with a minimal
number of symbols; Partition II captures a timestep before any significant learning progress; Partition
IIT aligns with the onset of performance improvement; Partition IV represents final stage of learning.
Let us note that Ant Fall is more complex than Ant Maze as it includes an additional pushing task.

3. Methodology

Algorithm 1 Translation by LLM of Human Instructions into Emergent Symbolic Representations

Require: S = {s1,S2,...,sn}: symbolic representations from STAR,
I ={I,I,...,In}: set of human instructions sets,
G ={G1,Gq,...,GN}: set of ground truth output sets

Ensure: M = {M; 1, Mi3,..., My, s}: evaluation scores

fori=1to N do
for j =1toJ do
Pij < fprompt(sia Ii,j)
fork =1to K do
0%{\2 « LLM(p; j, %)
Mg 5k < MaXg=1...Q M <O£‘EI’\,§, Giﬂ"q)
end for
1 —K
end for
end for

Let S = {s1,s2,...,sn} denote the set of internal symbolic representations identified during the
developmental learning process of STAR. We design a collection of instructions I = {I1, 2, ..., In}
from J humans, where each element is a set of instructions I; = {I; 1, l; 2, ..., I; j}. Each instruction
I; j corresponds to a unique natural language command describing the goal or behavior related to
s; by the human j. We define a prompt construction function fyrompt(si, I;,;) that takes a symbolic
representation s; and an associated instruction I; ; to generate a textual prompt p; ; for the LLM:

Dij = fprompt(siali,j) (1)

Due to the stochastic nature of LLMs, a given prompt p; ; may result in different outputs across
multiple queries. We introduce a random state 7 (e.g., random seed) and define the LLM-generated
output at query time k as:

op it = LLM(p;j, ) ()

To establish a reference for evaluation, domain experts provide human-annotated ground truth
outputs G; ; for each symbolic-instruction pair (s;, I; ;), so for each G; € G, G; = {Gi1,Gio, ..., Gij}.
It is possible that multiple reference outputs are compatible with the pair (s;, I; ;), in this case we
consider a set of references G;; = {G j 1,..., G} foreach G; ; € G;. The set of ground truth output
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sets is the collection of all these references: G = {G1, G2, ... G }. We then define an evaluation metric
M (OLLM, G ) that measures the similarity between the LLM-generated output and the corresponding
human-provided reference. Since there may exist several possible ground truth responses associated
with one internal symbolic set and one instruction, we compute the performance for each pair by taking
the maximum similarity across all human-provided references G; ; ,. The similarity is high if at least
one of the references provides a high similarity. The average score over K runs is defined as:

K

1
Mij =+ M (MM @G, 3
" K ;qrznﬁ}.(cg (Owa w,q) (3)

This formulation allows us to robustly evaluate the performance of LLMs to translate symbolic
representations into interpretable language aligned with human expectations. The overall algorithmic
procedure is described in Algorithm 1.

4. Implementation

4.1. Designs of Prompt

In order to reduce the ambiguity and optimize the information processing of LLM, the prompt that is
given to the LLM needs to be carefully designed. A well-structured prompt guides the model toward
producing outputs that align with the intended task or reasoning process. Considering the characteristic
of the algorithm STAR, we design a prompt that includes four terms:

+ Graph-Based Representation: We explicitly map the internal representation into a graph which
encourages the agent to navigate using abstracted region connections.

« Explicit State and Goal Representation: We represent the current state and goal symbolically on
the graph.

« Instruction-to-Graph Mapping: We translate human language into a structured symbolic reasoning
process, ensuring alignment between linguistic commands and executable movements, i.e. actions
to move to a neighbour region.

« Final output form: We regularize the final output form to facilitate the evaluation process.

Examples of prompts in Ant Maze and Ant Fall are given in Appendix A

4.2. Selection of Evaluation Metrics

Since our task consists in translating a natural language sentence into a sequence of symbols emerged
in the robot representing a region traversal sequence, order and precision are critical. Its evaluation
requires a metric that penalizes incorrect orderings while tolerating minor structural variations. Google-
BLEU (G-BLEU) [16] is an improved version of BLEU [17, 18],which is the quotient of the matching
words under the total count of words in hypothesis sentence (traduction). Regarding the denominator
BLEU is a precision oriented metric. G-BLEU applies a smoother brevity penalty and better handles
sparse n-gram statistics. By rewarding partial correctness and preserving order sensitivity, G-BLEU
is well-suited for assessing the alignment between LLM-generated outputs and symbolic plans. The
evaluation metric M in (3) used is G-BLEU. As this study does not aim for autonomous navigation,
already assessed by the algorithm STAR, we do not report success rate of the task.

5. Experimental Evaluation

5.1. Translation Ability of LLMs Across Partition Granularity

In the first experiment, we evaluate the consistency of LLMs in interpreting fixed natural language
instructions across varying symbolic abstractions. For both the Ant Maze and Ant Fall environments,
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Table 1
Mean G-BLEU scores of LLMs over 4 runs for each partition in the Ant Maze and Ant Fall environments.
Ant Maze Ant Fall
LLMs P-I [ P-L [ P-IL [ P-IV [[ P-I [ P-Il [ P-lI | P-IV
GPT 03-m 1 1 1 0.87 1 0.80 | 0.73 | 0.86
Claude 1 1 0.73 | 0.34 1 0.50 | 0.62 | 0.77
Deepseek 1 09 | 053 | 0.65 1 0.66 | 0.74 1
GROK 1 1 1 0.89 1 0.66 | 0.74 1

we keep the agent’s start and goal positions fixed and apply the same instruction to all partition levels.
The instruction for Ant Maze is: “Move right until you completely pass the wall on your left, move up
until you have crossed the upper wall, turn left and proceed until you reach the goal” For Ant Fall it is:
“Move east until reaching the end, then go north to push the movable block into the pit, cross the pit
using the block as a bridge, and finally head west to reach the goal”

We report in Table 1 the G-BLEU score for the translation of these instructions into a sequence
of regions by four commonly used reasoning LLMs: GPT 03-mini, Claude 3.7, DeepSeek-r1, and
GROK. While GPT o03-mini achieves the highest scores, all LLMs achieve scores above 0.5 across tasks,
indicating a generally successful translation of human instructions into the agent’s internal symbolic
representation. In the Ant Maze environment, all LLMs scores decrease as the number of regions
increases. This observation suggests that as the symbolic space becomes more fine-grained, the increase
in abstraction complexity challenges the LLMs’ ability to produce coherent and accurate language-to-
symbol translation. Notably, the degradation of performance varies by model: GPT 03-mini and GROK
demonstrate greater robustness than DeepSeek-r1 and Claude 3.7. In Ant Fall, however, the translation
performance follows a non-monotonic trend—initially decreasing and then partially recovering. This
pattern is likely due to the task’s increased complexity, which involves not only spatial navigation but
also object manipulation.

Given the consistent trends observed across LLMs, we select GPT 03-mini as the representative
LLM for subsequent experiments. Furthermore, to better characterize the translation performance in
Ant Fall, we segment the task into two phases: (1) before the block, where the agent must reach the
object, in a navigation task similar to AntMaze; and (2) after the block, where the agent has to use the
block as a tool to reach the goal. This separation can highlight the LLM translation behavior under the
environment change induced by tool use.
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Figure 2: G-BLEU scores for partition-agnostic instructions tested in (a) Ant Maze, and (b) Ant Fall
before block and (c) Ant Fall after block. For each internal representation, we plot in blue the average
and standard deviation of 10 queries for each instruction, and boxplot in brown, orange and yellow the
average and IQR over the 11 instructions.

In order to test the robustness of the previous results with statistical tests, we design 11 different
instructions for each environment (shown in Appendix B), and tested all 11 instructions on all four
partitions. We constructed the prompt with the method introduced in Section 3 and queried the LLM
10 times. Figure 2 illustrates the average G-BLEU scores across the symbolic partitions of Ant Maze,
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Figure 3: G-BLEU scores for partition-associated instructions tested for each internal representation in
(a) Ant Maze, (b) Ant Fall before block and (c) Ant Fall after block. For each tested internal representation,
we plot in green the average and standard deviation of 10 queries for instruction from each person, and
we show the median and the IQR over the 11 persons by boxplot.

Ant Fall before the block and Ant Fall after the block. We observe a perfect translation performance in
Partition I both in Ant Maze and Ant Fall. The trend of translation performance observed in Ant Maze is
a consistent slightly drop from Partition I to Partition IV, while in Ant Fall before block, the translation
performance drops from Partition I to Partition II, followed by a recovery or stabilization in Partitions
IIT and IV. This trend is interpretable through the partition structures shown in Figure 1. Partition I
represents a very coarse abstraction with minimal region division—making it easier for the LLM to
infer plausible region sequences regardless of the instruction quality. Then, when the partition becomes
more granular in Ant Maze, the LLM is more prone to mistakes. In Ant Fall before Block, however, in
Partition II, the bottom-left is partitioned as a single big region, while the bottom-right is partitioned
into small regions. This introduces a confusion : which small region of the right corresponds to the
displacement to the right from the big bottom-left region? In contrast, in Partition III, the bottom-left
part becomes finer, which lifts this ambiguity. In Partition IV, more regions emerge in the already
partitioned bottom-left part, which does not introduce too much change to the performance. On the
contrary, in Ant Fall after Block, we observe low scores from Partition II, IIT and IV. This part includes
the agent’s use of the movable block as a tool to build a route: after the agent moves the block, the
environment changes, and the LLM fails to capture the change in the environment, thus fails to translate
the instructions. These results indicate that the LLM has some ability to translate the human instruction
into internal symbolic representation from coarse to fine, while it has some difficulties to manage tool
use.

5.2. Variability in the Instructions

To test the robustness of our results to the variability of instructions, we asked 11 participants most of
whom are researchers in the lab, but not knowledgeable about hierarchical reinforcement learning or
the algorithm STAR, to write their own verbal instructions in the Ant Maze and Ant Fall environments.
We created a questionnaire in which the participants were shown the partition layouts in Fig.1(c)(f) and
were asked to express a general instruction: “go —, then go 1, and finally go < to reach the goal,” by
using their own words, with instructions that correspond to the region partitions and to differentiate
their descriptions for each partition. The average G-BLEU scores between the LLM-generated symbolic
output and the ground truth, over ten runs of the LLM, are presented in Fig.3. The higher variance in
Fig. 3 than in Fig. 2 is due to the instructions originating from 11 different participants outside of the
project, instead of a single person.

At Ant Maze Partition-I, G-BLEU scores are consistently close to 1.0, indicating high overlap between
the LLM-generated region sequence and the ground truth sequence. This reflects accurate interpretation
and planning under a simple abstraction. As partition granularity increases, G-BLEU scores decline, with
growing variance across participants. The increased fragmentation of regions introduces more possible
region transitions, leading to higher risk of deviation in LLM outputs. For Ant Fall, the performance of
LLM for partition-associated instructions drops a little by comparing to Fig.2, however the tendency
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does not change. This indicates the conclusion that we got from Section 5.1 is valid.

5.3. Assessing Representation Alignment via Instruction-Partition Mismatch

We evaluate how well an LLM aligns natural language instructions in the internal symbolic spatial
representations by testing instruction-environment mismatch scenarios in Ant Maze and Ant Fall. We
analyze two complementary setups: (1) applying instructions gathered for the simplest partition to all
partition levels, and (2) applying instructions gathered for the most complex partition to all levels.

Figure 4a to 4c plot the G-BLEU of the simplest partition instructions applied across all levels in
Ant Maze task and Ant Fall. We find that instructions corresponding to the simplest partition yields
nearly perfect language alignment on the simplest partition level. However, as the same coarse-partition
instruction is applied to more complex partitions, performance degrades and variability increases. The
high variation between participants underscores that the LLM translation of the simplest partition
instructions in a very complex environment is highly inconsistent. We also notice that the decline is
not strictly linear with partition complexity. In Ant Fall, once these instructions are applied to more
complex partition levels, the performance drops markedly, more so than in Ant Maze. Interestingly,
the trend is not strictly monotonic: at Ant Fall Partition-III the median rises slightly, recovering some
performance even though the partition mismatch is larger. This non-monotonic behavior suggests that
the relationship between partition granularity mismatch and G-BLEU score is complex. By comparing
Fig.4a to 4c with Fig.3, we observe that an eminent increase in all figures, which totally contradicts
what we expect: The G-BLEU scores drop sharply in a properly aligned-but-mismatched scenario. This
failure pattern illustrates that the LLM struggle to maintain symbolic translation ability from human
natural language: instructions refer to certain regions can erroneously be repurposed by the model in
a different context, because the model does not accurately “understand” region partitions as internal
representations.

Figure 5a to 5c show the results of the instructions associated with the most complex partition
applied to all partitions. Intuitively, one would expect the performance to be the highest when these
detailed instructions are used on their corresponding fine-grained partition. However, contrary to
expectations, the results show an almost inverted pattern. On the associated complex partition, the
G-BLEU scores are only moderate, this suggests that the complex partition instructions themselves may
be poorly learned and the LLM lacks the capacity of alignment of two representations even in the ideal
case. When the same complex instructions are applied on the simplest partition, the G-BLEU scores
remain exceptionally high, which corresponds to the performance that we observe in Fig.2. This is
because the partition is too simple to make a mistake, so LLM defaults to describing the high-level route
correctly. When we focus on the intermediate partitions and compare them to the associated-instruction
performance in Fig.3, the no-dropping scores of Partition-II and Partition-III further reflect that the LLM
is not leveraging the symbolic region structure as intended. It points to conclude that the translation
ability of LLM relies on some surface-level patterns and is not firmly aligned on the understanding of
internal symbolic representation.

Additionally, the inter-participant variability is significant in the experiments, we see some runs
apparently stumbling on instructions while others fail. It suggests the LLM behavior is somewhat
random with respect to the symbolic alignment. In particular, participants 1, 2, 11 mentioned the
partitions explicitly in their descriptions, for instance, the instruction of participant 11 is "Move right
across three regions, then move up across five regions, move left at the end of the current region, then
move down until the obstacle, and finally move left until the goal" However, the change of the G-BLEU
score for the instructions applied on the different partitions is not correlated to whether they are aligned
or not.

6. Discussion

Our findings highlight key limitations in the translation ability and symbolic representation alignment
of the LLMs in developmental learning agents. Even when instructions align with the environment’s
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Figure 5: Instructions specific to the most complex partition applying across all partitions in (a) Ant
Maze task, (b) Ant Fall task, before block, (c) Ant Fall task, after block.

symbolic partitions, performance is often lower than expected and inconsistent across trials, suggesting
that LLMs do not reliably exploit symbolic structures. Conversely, mismatched instructions sometimes
yield comparable results, indicating that LLMs may rely on surface-level patterns rather than true
symbolic grounding. Such behavior reflects a core issue of translation ability: although LLM-generated
responses may appear syntactically correct and fluent, they do not necessarily reflect the true symbolic
planning process of the agent. This disconnect undermines the use of LLMs as interpretable inter-
mediaries in human-agent interaction, especially in safety-critical applications where understanding
and verifying behavior is essential. These limitations point to a broader alignment problem between
language and symbolic reasoning in current LLMs. As a result, the generated language cannot be
reliably used to infer or verify the agent’s decision-making process. Future works will need to address
this limitation. While we believe that LLMs lack grounding, Vision-Language-Action models are bound
to address these limitations in the future.

7. Conclusion

In this study, we examined whether large language models can effectively translate human natural
language instructions into the emergent symbolic representations of developmental learning agents.
Through a series of experiments on the Ant Maze and Ant Fall partitions emerged by the hierarchical
reinforcement learning algorithm STAR, we demonstrated that LLMs have some ability to translate
human instructions into internal symbolic representations, however it fails to understand using tools
to interact with the environment. The inconsistency in G-BLEU scores and mismatched instruction-
partition highlights a lack of stable alignment between human language and symbolic plans, indicating
that the capacity of LLMs in alignment is inconclusive and should still be improved. Future research
must focus on bridging this gap through enhanced grounding mechanisms to enable more reliable
alignment between linguistic commands and the developmental agent’s internal symbolic decision-
making processes.
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Appendix

A. Prompt Design

We take the Partition IV in Ant Maze and Ant Fall for example.

A.1. Partition IV in Ant Maze

Data:
-State: Region 5
-Goal: Region 4

-Adjacency list:
Region 1: [6, 7, 11, 12, 14, 18]
Region 2: [12, 13, 14, 15]
Region 3: [4, 19, 21]
Region 4: [3]
Region 5: [6, 7, 8, 9, 11]
Region 6: [1, 5, 7, 11]
Region 7: [1, 5, 6, 12]
Region 8: [5, 9, 10, 12]
Region 9: [5, 8, 10]
Region 10: [8, 9, 12, 13]
Region 11: [1, 5, 6, 17]
Region 12: [1, 2, 7, 8, 10]
Region 13: [2, 10, 15]
Region 14: [1, 2, 15, 18]
Region 15: [2, 13, 14, 16, 18, 20]
Region 16: [15, 17, 18]
Region 17: [11, 16, 18]
Region 18: [1, 14, 15, 16, 17]
Region 19: [3, 20, 21, 22, 23]
Region 20: [15, 19]
Region 21: [3, 19, 22]
Region 22: [19, 21, 23]
Region 23: [19, 22]

-The top-down view of the maze is shown
’A’
represents the ant’s current position,

below, ’W’ represents walls,

’G’ represents the goal. The number
represents the region number:

4 4 4 4 4 3 21 21 22 22 22 22 23
4 4 4 4 4 3 19 19 19 19 19 19 19
4 G 4 4 4 3 19 19 19 19 19 19 19
W W W W W W W W W 19 19 19 19
W W W W W W W W W 19 19 19 19
W W W W W W W W W 19 19 19 19
W W W W W W W W W 20 20 20 20
10 10 10 10 10 13 13 15 15 15 15 15 15
9 9 8 12 12 2 2 15 15 15 15 15 15
5 5 5 7 1 14 14 15 15 15 15 15 15
5 A5 6 1 18 18 18 18 18 16 16 16
5 5 5 11 11 17 17 17 17 17 17 17 17
-Instruction:

Move right until you completely pass the
wall on your left, move up until you have
crossed the upper wall, turn left and
proceed until you reach the goal.

-Thinking Process:

1. Identify the agent’s current region and
the goal region.
2. Interpret the Instruction: Understand

the directional commands provided in the

instruction and translate them into
movements between regions.

. Plan the Route: Based on the adjacency

list and the maze layout, determine the

sequence of regions the agent should

traverse to follow the given instructions
and reach the goal.

. Check for each region of the sequence

if the agent can move directly to the

next. If not, correct the sequence
according to the instructions.
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A.2. Partition IV in Ant Fall

Data:
- State: Region 1
- Goal: Region 3
- Block: Region 8
- Adjacency list:
Region 1: [16, 17, 19, 21, 22]
Region 2: [5, 6, 11, 13]
Region 3: [4, 24]
Region 4: [3, 23, 24]
Region 5: [2, 11, 12, 13]
Region 6: [2, 11, 13, 14, 17, 19, 20, 22]
Region 7: [8, 11, 12]
Region 8: [7, 10, 12, 13]
Region 9: [10, 14]
Region 10: [8, 9, 13, 14]
Region 11: [2, 5, 6, 7, 12]
Region 12: [5, 7, 8, 11, 13]
Region 13: [2, 5, 6, 8, 10, 12, 14]
Region 14: [6, 9, 10, 13]
Region 15: [16, 18, 21]
Region 16: [1, 15, 21, 22]
Region 17: [1, 6, 19]
Region 18: [15, 20, 22]
Region 19: [1, 6, 17, 22]
Region 20: [6, 18, 22]
Region 21: [1, 15, 16]
Region 22: [1, 6, 16, 18, 19, 20]
Region 23: [4, 24, 25]
Region 24: [3, 4, 23, 25]
Region 25: [23, 24]

- The top-down view of the maze is shown

below:

3 3 3 3 3 3 3 2424 24 25 25 25 25 25
3 3 G 3 3 3 3 2424 24 23 2323 23 23
3 3 3 3 3 3 3 4 4 4 23232323 23
P p PP PP PP PP P P P P P
P P P PP PP P P P P P P P P

1515 18 18 18 20 20 20 6 14 14 14 14 9 9
21 16 22 22 22 22 22 22 6 14 14 14 14 10 10
21 16 22 22 22 22 22 22 6 13 1313 13 13 B
21 16 22 22 22 2222226 2 5 5 1212 B
111111 19196 2 5 5 121238

11

11111117176 2 5 5 12 127
111111 17176 2 5 5 12127
11A111 17176 11111111117
11111117176 11 1111 11 117
-Explanation:

P represents pit, A represents the agent’s
current position, B represents the movable
block which can be pushed by agent in four
directions, G represents the goal, the
number represents the region number. The
block and the pit have the same width, the
only way that the agent can pass the pit

is to push the block to fill the pit and
bridge the regions or it will not go
through the pit: The action push means
that the block moves one step in front of
the agent in the direction that agent moves.

-Instruction:
Move east until reaching the end, then
go north to push the movable block into
the pit, cross the pit using the block
as a bridge, and finally head west to
reach the goal.

-Thinking Process:

1. Identify the agent’s current region

and the goal region.

2. Interpret the Instruction: Understand
the directional commands provided in
the instruction and translate them

into movements between regions.

3. Plan the Route: Based on the adjacency

list,
explanation, if the agent follows

the maze layout and the

the instructions to reach the goal,
describe the sequence of regions
traversed by the agent.

4. Check for each region of the sequence
if the agent can move directly to the
next. If not, correct the sequence

according to the instructions.
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B. 11 Instructions given to the partitions in AntMaze and AntFall

Table 2

Natural language instructions for AntMaze and AntFall tasks

Instructions ‘

AntMaze

AntFall

1

Move east until you are past the wall, then
go north beyond the upper barrier, turn west,
and continue until you reach the goal.

Move east until reaching the end, go north
to push the block into the pit, cross the pit
using the block, and finally head west to the
goal.

Head right until there’s no obstruction in
your way, then move up until the path is clear,
turn left, and proceed to your destination.

Travel right as far as possible, move up to
push the block forward into the pit, step onto
it to cross, and then turn left to reach the
goal.

Travel right to get around the first wall, as-
cend straight up to clear the second, then
shift left and move toward the goal.

Head east until there’s no path ahead, move
north to align with the block, push it forward
into the pit, cross over it, and continue west
to the goal.

Move horizontally to the right until you pass
the boundary, then go straight up until no
walls remain, turn left, and continue forward.

Move straight east until stopped, go north to
push the block into the pit, walk over it, and
move west until you reach the goal.

Proceed east to navigate around the wall,
then ascend north until you are clear, turn
west, and move straight to your target.

Walk east along the open path, move north to
push the block into the pit, use it as a bridge
to cross, and turn west to the goal.

Walk right until you exit the confined space,
then go up beyond the vertical wall, turn left,
and follow the open path to the goal.

Move right until reaching the boundary, step
north to the block, push it into the pit, cross
the pit safely, and proceed left to the goal.

Move sideways to the right until the wall is
behind you, then climb upwards until there’s
no barrier, turn left, and walk toward the goal.

Travel east until you hit an obstacle, go up
to push the block into the pit, cross over, and
move left to the goal.

Head eastward until you escape the enclosed
area, ascend northward past the last obstruc-
tion, then turn west and reach your goal.

Head east until the end, go up to push the
block forward, use it to walk across the pit,
and turn west to reach the goal.

Travel right along the open path until no wall
blocks your way, go straight up past the top
structure, then turn left and proceed to your
destination.

Move eastward until there’s no more space,
step north to push the block, let it fill the pit,
cross over, and continue west to the goal.

10

Move toward the right until you have an open
vertical passage, then go up until the way is
clear, turn left, and walk directly to your goal.

Walk right until the path ends, move up to
the block, push it forward to fill the pit, step
on it to cross, and then head left to the goal.

11

Navigate eastward beyond the boundary,
then ascend straight up to clear the struc-
ture, turn left, and reach the goal without
further obstacles.

Travel east until the stopping point, move
north to push the block, use it to bridge the
pit, step over it, and finally walk west to the
goal.

12
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