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Abstract— Large Language Models (LLMs) exhibit their
potential for interacting with reinforcement learning agents,
the main challenge is to align the world model learned by
the agent with a representation compatible with LLMs, these
representations should be well structured and contain the whole
information of the environment. Some hierarchical reinforce-
ment learning (HRL) addresses this challenge by decomposing
task and producing emergent symbolic representations of a
long-horizon task. However, a central open question remains:
how to effectively learn a representation of the environment
that aligns with LLM? We study in this paper, how a symbolic
representation of space can be taken advantage of by LLMs for
learning long-horizon tasks. First, we evaluate the translation
ability of the state-of-the-art LLMs in symbolic representation
of emergent learning agent in Ant Maze task, showing that they
succeed under coarse symbolic partitions however degrade with
finer granularity. Inspired by this observation, we introduce
SGIM-STAR, a hybrid framework where the top-level agent
choose actively between a Q-learning based Commander and
an LLM-based planner using a partition-wise, progress-driven
intrinsic rule. Both strategies in this framework use a symbolic
representation of the space. Experiments demonstrate that
SGIM-STAR improves stability over STAR, reduces reliance
on costly LLM calls, and achieves higher long-horizon task
success. Our findings highlight the dual role of LLMs as both
translators of human intent and adaptive planners grounded
in emergent symbolic representations, paving the way for more
interpretable and language-grounded robotic planning.

I. INTRODUCTION

Robotic agents deployed in complex environments must
not only learn low-level control of each actuator but plan
over long horizons. For instance, in the Ant Maze [1] envi-
ronment, a legged robot needs to learn both to control its legs
in a coordinated way to move in the desired direction, and
to plan its path in the long-term by setting subgoals in order
to navigate a ’⊃’-shaped maze to reach the exit positioned
at the top left. Hierarchical Reinforcement Learning (HRL)
[2] has emerged as a promising paradigm to address this
challenge by decomposing tasks into manageable small tasks.
Several HRL algorithms [3], [4] and neurosymbolic repre-
sentation algorithms [5] focus on learning representations of
the subgoal space to mitigate the curse of dimensionality
and enable efficient long-horizon planning. Such emergent
representations are attractive because they provide structured
abstractions of the environment. While the algorithm LES-
SON [3] uses a continuous latent space to represent subgoals,

*This work is partially supported by Hi! Paris
1All the autors are with Laboratory of Computer Science and Sys-

tem Engineering (U2IS), ENSTA, IP-Paris, 828 Bd des Marechaux,
91120 Palaiseau, France. With the mail ziqi ma0605@163.com for
Ziqi MA, nguyensmai@gmail.com for Sao Mai NGUYEN and
philippe.xu@ensta.fr for Philippe XU

and DeepSym [5] learns to extract symbolic representations
assuming a finite set of predefined actions, STAR [4] learns
online a symbolic representation of subgoals without a list
of predefined features given in advance in continuous state
and action spaces.

For robots to act for and with people, their representations
must be not only functional but also reflective of what
humans care about, i.e. they must be aligned. Because
humans are the ultimate evaluator of robot performance, we
must make efforts to align the learned representations with
humans, such as their linguistic descriptions of the task and
environment through linguistic symbols. Therefore, they can
serve as a bridge toward natural language interaction. Thus,
intuitively, symbolic internal representations could provide
an easier way for representation alignment. This is why in
this work, we will examine symbolic representations learned
by HRL, such as with the STAR algorithm [4].

Recent advances have shown that human representation
through language has been quite successfully modeled by
foundation models of Large Language Models (LLMs).
Although trained mostly on abstract content such as from
web scrapping, LLMs can even carry internal reasoning
capabilities [6]–[10] that can be exploited for effective inter-
action in embodied AI to drive reinforcement learning (RL)
and planning agents [11], [12]. However, their performance
is poor in the case of real-world inference because of
the grounding problem [13]. Another limitation of the use
of LLMs for effective interaction within environments is
the lack of a symbolic representation of the continuous,
physical embodied world. Thus, a central open question is
how to effectively learn a symbolic representation of the
environment that aligns with the LLM so that they can (i)
convey the natural language instructions from humans, and
(ii) improve learning and planning performance.

Our contribution is to study how a symbolic representation
of space learned online with HRL can be taken advantage of
by LLMs, for learning long-horizon tasks. In this paper, we
address these challenges through two stages:

• First, we test the possibility of involving an LLM in
the RL learning process by analysing the alignment of
the emergent symbolic representation with language.
More concretely, evaluate whether natural language
instructions can be translated into a path using the emer-
gent symbolic partitions produced by an online HRL
algorithm, STAR. We show that LLMs can translate
between human language instruction and the emergent
symbolic representation, with near-perfect score under
coarse partitions, even though their score degrades with
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Fig. 1: Algorithmic architecture of SGIM-STAR which inte-
grates the LLM and the Commander of STAR at the top-level
agent and chooses between the LLM and the Commander
based on progress. The Commander or the LLM selects
subgoal regions G ∈ G, while the middle-level tutor and
low-level controller are unchanged.

finer symbolic granularity.
• Second, we propose SGIM-STAR (Socially Guided

Intrinsic Motivation based on Spatio-Temporal Abstrac-
tion via Reachability), a novel algorithm to solve the
long-horizon tasks in which the agent chooses actively
its learning strategy between a reinforcement learning
and a LLM-guided planner based on intrinsic motivation
[14], [15]. The originality is that we use for both
strategies a symbolic representation of the sensorimotor
space, by learning from a bottom-up process an emer-
gent symbolic representation, and making it compatible
with the symbolic space of language used in a top-down
planner.

Our experiments demonstrate that the agent exploits the ef-
ficiency of the RL in early training while selectively invoking
LLM guidance once a reliable symbolic structure emerges,
yielding mutual benefits. Translation analysis shows the
possibility of involving LLM in the RL learning process,
while SGIM-STAR leverages emergent symbolic structures
to stabilize long-horizon learning and reduce reliance on
costly LLM calls. Together, these contributions point toward
a unified framework where LLMs function both as translators
of human instructions and as adaptive planners grounded
in emergent symbolic representations. This dual role ad-
vances the development of language-grounded hierarchical
reinforcement learning for robotics, paving the way for more
effective human–robot interaction.

II. RELATED WORKS

A. Space Representation for Hierarchical Reinforcement
Learning

To address complex tasks which involve long-term plan-
ning and multi-step actions, HRL algorithms [3], [16], [17]
decompose a task into simpler subtasks, allowing them to be
subsequently solved efficiently. Some HRL also sought to
solve the curse of dimensionality problem of subgoal space
by learning a representation of the subgoal space. LESSON
learns latent slow features to capture long-horizon dynamics
[3]. GARA [18] and STAR [4] solved the computational cost
problem of HRAC by building reachability-aware regions
and refining them based on learned k-step reachability, while

their training results can be unstable. To address long-
horizon tasks in robotic real-world environments that are
high-dimensional, we extend this line of work to enhance
this internal representation with complementary mechanisms
to stabilize the performance.

B. Socially Guided Intrinsic Motivation (SGIM)
To tackle sparse-reward learning tasks, Intrinsic Motiva-

tion (IM) drives exploration through automatic curriculum
learning before external rewards are observed [14], [15].
Various measures have been proposed, such as novelty, com-
petence, or progress [19]–[21]. However, IM alone struggles
in high-dimensional spaces. To complement RL, human-in-
the-loop approaches [22] have been developed. Imitation
learning [23] and inverse-RL methods [24], [25] serve as
computational frameworks for social guidance in robotics, by
either transposing a policy from demonstrations or learning
a reward signal. Whereas all the methods that metionned
usually treat the agent as passive. In contrast, active imitation
learning allows the agent to request guidance from teachers
[26], [27]. Extending this idea, SGIM couples IM with social
input so the agent actively decides what, when, and whom
to imitate based on learning progress [28], [29]. This yields
an adaptive curriculum where competence improves fastest,
enabling efficient exploration in high-dimensional domains.
Our work builds on this principle, enabling agents to choose
between reinforcement learning or soliciting expert guidance
depending on intrinsic progress.

C. Large Language Models in Decision-Making
Recent breakthroughs in LLMs have significantly ex-

panded their capabilities beyond natural language processing
to complex reasoning and decision-making tasks. However,
integrating LLMs into reinforcement learning frameworks
remains challenging due to poor space representation of
a continuous environment, whereas LLMs use a discrete,
symbolic representation. [30] uses language as the interface
between high- and low-level policies in hierarchical RL,
with a low-level policy that follows language instructions,
and the top-level policy producing actions in the space
of language. In [6], LCB uses a learnable latent code to
act as a bridge between LLMs and low-level policies. To
alleviate the lack of grounding of LLMs in space, these
works add to the reinforcement learning agents a new layer
to translate between the continuous space of states and the
discrete space of LLM symbols. However, the reinforcement
learning algorithms GARA and STAR [4] learn a discrete
representation directly, which symbols can be more readily
used by an LLM. In this work, we explore how the emerging
symbolic representation of STAR can be exploited by LLMs.

III. PRELIMINARY: SPATIO-TEMPORAL ABSTRACTION
VIA REACHABILITY (STAR)

The STAR algorithm [4] is a reinforcement learning algo-
rithm that uses a three-layered hierarchical structure:

• Commander: the top-level agent plans the long-horizon
path by setting intermediate goals. It is trained by Q-
learning which chooses an abstract goal G ∈ G every



Fig. 2: (a) Ant Maze environment [1], (b) Average success
rate of STAR, (c) Partition into regions of STAR. The regions
in (c) are the internal representation emerging during the
training at timestamps noted in (b). The red point is the initial
position of the robot. The yellow point is the goal position.
Our translator translates instructions to guide the robot (e.g.:
”go east to the end, turn north until past the wall and go west
until the end”), into a sequence of traversed regions (e.g. for
Partition II, the output is 5 → 11 → 2 → 3 → 4).

k steps that should help to reach the task goal g∗ from
the current agent’s state (Gt+k ∼ πComm(st, g

∗)).
• Tutor: the mid-level agent trained by TD3 which picks

subgoals in the state space every l steps (gt+l ∼
πTut (st, Gt+k)). We note that k is a multiple of l.

• Controller: the low-level policy trained by TD3 that
chooses actions to reach the subgoal every step (a ∼
πCont(st, gt+l))

STAR incrementally refines the partition of the sensori-
motor space (as shown in Fig. 2 (c)) by analyzing k-step
reachability relations between goal regions. The refinement
module uses as inputs the past episodes D and the list of
abstract goals E visited during the last episode, and outputs
a partition of the state space.

IV. INTERNAL REPRESENTATION USED TO TRANSLATE
NATURAL LANGUAGE INSTRUCTIONS

A first step toward language-grounded hierarchical rein-
forcement learning is to determine whether LLMs can align
with the symbolic abstractions that emerge during training.
We collect the symbolic partitions that emerge during the
execution of the STAR algorithm on the Ant Maze, as
illustrated in Fig. 2(a). To analyze LLM performance across
different levels of abstraction, we select four representative
partitions from different developmental learning stages, as
shown in Fig. 2(c). Their corresponding positions are also
marked along the training curves in Fig. 2(b). Partition I
corresponds to the initialization partition with a minimal
number of symbols; Partition II captures a timestep before
any significant learning progress; Partition III aligns with the
onset of performance improvement; Partition IV represents
the final stage of learning. We keep the agent’s start and goal

TABLE I: Mean G-BLEU scores of translations of natural
language instructions over 4 runs for each partition in the
Ant Maze environment.

Translator Ant Maze
P-I P-II P-III P-IV

GPT o3-m 1 1 1 0.87
Claude 1 1 0.73 0.34
Deepseek 1 0.9 0.53 0.65
GROK 1 1 1 0.89

positions fixed and apply the same instruction to all partition
levels. The natural language instruction is: “Move right until
you completely pass the wall on your left, move up until
you have crossed the upper wall, turn left and proceed until
you reach the goal”, the LLM needs to translate it into a
sequence of traversed regions like 5 → 11 → 2 → 3 → 4 in
Partition II. We use G-BLEU score to measure the matching
degree of the sequence translate by LLM and the ground
truth that is decided by human experts. We report in Table I
the G-BLEU score for the translation results.

While GPT o3-mini achieves the highest scores, all trans-
lators achieve scores above 0.5 across tasks, indicating a
generally successful translation of human instructions into
the agent’s internal symbolic representation. In the Ant Maze
environment, all translator scores decrease as the number
of regions increases. This observation suggests that as the
symbolic space becomes more fine-grained, the increase
in abstraction complexity challenges the LLMs’ ability to
produce coherent and accurate language-to-symbol trans-
lation. Notably, the degradation of performance varies for
each model: GPT o3-mini and GROK demonstrate greater
robustness than DeepSeek and Claude. Given the consistent
trends observed across LLMs, we select GPT o3-mini as the
representative LLM for subsequent experiments.

Fig. 3: G-BLEU scores for translation of natural language
instructions tested in Ant Maze. For each internal represen-
tation, we plot in blue the average and standard deviation
of 10 queries for each instruction, and boxplot in brown the
average and IQR over the 11 instructions.

In order to test the robustness of the previous results with
statistical tests, for our second experiments, we design 11
different natural language instructions for each environment,



and tested all 11 instructions on all four partitions. We
constructed the prompt and queried the LLM 10 times.
Figure 3 illustrates the average G-BLEU scores across the
symbolic partitions of Ant Maze. We observe a perfect trans-
lation performance in Partition I. The translation performance
observed in Ant Maze slightly drops from Partition I to
Partition IV. This trend is interpretable through the partition
structures shown in Figure 2(c). Partition I represents a
very coarse abstraction with minimal region division, making
it easier for the LLM to infer plausible region sequences
regardless of the instruction quality. Then, when the partition
becomes more granular in Ant Maze, the LLM is more prone
to mistakes.

These results prove statistically that the representation
emerged by STAR can be leveraged by LLM to convey
natural language instructions.

V. SGIM-STAR : COMBINING LLM AND RL AS
PLANNERS

Motivated by the finding in Section IV that LLM can be
leveraged to translate human language to the symbolic repre-
sentation emerging during RL agents, we investigate whether
LLMs can be involved directly into the RL process for deeper
improvements. Specifically, we wish to answer three ques-
tions: (i) can LLMs help to build the representations of the
space, (ii) can LLMs provide useful guidance signals during
training, and (iii) can they be integrated into the decision-
making loop with minimal additional cost? To address these
questions, we propose a method that integrates LLM as
adaptive partners in planning. Our algorithm follows STAR’s
hierarchical structure and reachability-aware abstraction, but
augments the top-level agent with an LLM and introduces
a partition-wise, progress-driven active learning between a
(Q-learning) RL-based planner and an LLM planner.

A. Integration of an LLM into the Top Level Agent

We extend STAR by incorporating an LLM into the
top-level agent. The structure is shown in Fig. 1. Instead
of relying solely on the Commander policy πComm(G|st),
we introduce an LLM-based planner πLLM (G|Ψt), which
operates on a prompt Ψt encoding the agent’s current region,
available partitions, and task description. Thus, the top-level
goal selection becomes:

G′
t+k ∼ πLLM (· |Ψt), Ψt = ψ(st,GN , g∗,Ht), (1)

where GN is the set of admissible regions, g∗ is the task
goal, and Ht summarizes human knowledge. This modifica-
tion allows the top-level agent to integrate human-readable
instructions and world knowledge expressed in natural lan-
guage, thereby aligning regional exploration with external
guidance or commonsense priors.

B. Active Imitation Learning of the Top Level Agent

To dynamically balance between the original STAR Com-
mander and the LLM-based planner, we use intrinsic moti-
vation based on progress measure as a selection mechanism.

Initialization. For the first N decision steps, the planner is
chosen randomly between the STAR Commander and LLM
in order to populate both buffers with initial experience.

Progress signal. At each timestep t, let m ∈ M =
{STAR,LLM} denote the planner used, known that Gt is
the partition of the space that has the same update mechanism
as STAR, let gt = ϕ(st,Gt) be the current region where
agent’s current state belongs to in the partition G. We define
the incremental reward difference: ∆t = rt − rt−1 which
reflects the immediate progress attributable to the planner’s
decision at t. This value ∆t is stored as ∆

(m)
t in the buffer

of the corresponding planner m for the active region gt.
Discounted progress accumulation. For each region

gt and planner m, we compute a discounted cumulative
progress over a sliding window of length n:

P(m)
gt (t) =

n∑
j=0

α j ∆
(m)
t−j (2)

where α ∈ (0, 1) is a progress discount factor that em-
phasizes recent progress while retaining memory of past
improvements.

Planner selection rule. At each decision step, the
algorithm selects the planner according to a progress-
maximization criterion:

m = argmax
m∈M

{
β(m)P(m)

gt (t)
}
, (3)

where β(LLM) ≥ 0 is a scaling factor that controls the
relative influence of LLM-derived progress (β(STAR) = 1).

Algorithm 1 SGIM-STAR: Active Imitation Learning of the
Top Level Agent

Require: Discount α ∈ (0, 1), Window size n, Warm-start
N , Scaling factor β(LLM)≥0, β(STAR)=1

1: Initialize Buffers B(m)
g ← ∅ and scores P(m)

g ← 0, ∀g ∈
G0,m ∈M = {STAR,LLM}

2: t← 0, observe (s0, r0)
3: while episode not terminated do
4: gt ← ϕ(st,Gt)
5: if t < N then
6: m ∼ Uniform(M)
7: else
8: P(m)

gt (t) =
∑n

j=0 α
j∆

(m)
t−j

9: m = argmax
m∈M

{
β(m)P(m)

gt (t)
}

10: end if
11: Use planner m to select top-level region Gt

12: Execute one decision step, observe (st+1, rt+1)
13: ∆m

t+1 ← rt+1 − rt
14: B(m)

gt ← (∆
(m)
t+1) ▷ (drop oldest if |B(m)

gt | > n)
15: t← t+ 1, st ← st+1, rt ← rt+1

16: end while

The pseudo code is shown in Alg.1, we notice that at
timestep t, if a region gt has already been well explored,



Fig. 4: Average successful rate of
SGIM-STAR compared to baselines and
three HRL methods

(a) The ratio of leveraging STAR as the top-
level planner

(b) The Partitions of space

Fig. 5: During the learning process of SGIM-STAR

then both planners yield low incremental progress (∆(m)
t ≈

0), resulting in small accumulated progress scores P(m)
gt (t).

Conversely, when the agent enters a novel region, progress
signals tend to be larger, biasing selection toward the planner
that has demonstrated stronger improvement in unexplored
regions. This mechanism naturally encourages exploitation
of novel areas while reducing reliance on planners that fail
to generate additional progress in familiar regions.

VI. PERFORMANCE OF SGIM-STAR

A. Experiment Setup

We evaluate our proposed algorithm, SGIM-STAR in the
Ant Maze environment, in which the robot must navigate
a ⊃-shaped maze and reach an exit located at the top left
corner. This task is inherently hierarchical: success requires
both fine-grained locomotion control (low-level) and long-
horizon navigation through the maze (top-level). Moreover,
Ant Maze is a suitable benchmark for evaluating LLM inte-
gration, as solving the task requires reasoning over abstract
spatial regions and selecting long-horizon subgoals rather
than relying solely on local control.

We compare our SGIM-STAR with the following methods:
• STAR: the original STAR framework where the top-

level agent is the Commander policy trained via Q-
learning.

• LLM Planner: STAR algorithm where the Commander
is replaced by an LLM using a handcrafted prompt. The
Tutor and Controller remain unchanged.

• SGIM-STAR-IM (SGIM-STAR with Interactive learn-
ing at the Meta level) : to study the importance of the
partition, we considered an ablation where the top-level
agent adaptively switches between STAR and LLM, but
without considering the environment partitions defined
by the STAR abstraction, as with the algorithm SGIM-
IM [31]: instead of computing P(m)

pt for each region,
we consider it for the whole state space.

All agents are trained on one NVIDIA GEFORCE RTX
4090 GPU, and we track their success rates over 5M envi-
ronment steps on 6 random seeds for SGIM-STAR, SGIM-
STAR-IM and STAR, and 3 seeds for LLM Planner.

B. Results and Analyses

Fig. 4 shows the average success rate across random seeds
for SGIM-STAR. We compare its performance with STAR,
LLM and SGIM-STAR-IM in ablation studies. For reference,
we also trace the average success rate of other HRL methods
but using the same seed, so they face less variability than
for STAR, SGIM-STAR, SGIM-STAR-IM and LLM: HIRO
[16], HRAC [17] and LESSON [3]. We notice that although
some HRL method achieve competitive performance, all of
them don’t construct a discrete representation of the space,
which makes direct integration with LLM infeasible. We
observe that the partition-based SGIM-STAR not only attains
the greatest success rate of 0.7 by the end of training but also
exhibits the smallest variance across seeds, indicating consis-
tent learning outcomes. In contrast, the other methods reach
lower success levels and have wider fluctuations. Notably,
the LLM-only agent plateaus around a moderate success
rate at around 0.6, while the pure STAR agent’s average
performance degrades significantly by the end of training
due to collapses in some runs. These results demonstrate
that incorporating partitioned task structure and adaptively
integrating LLM guidance produces superior resilience in
this long-horizon task.

To further analyze stability, we examine individual training
curves of each method. The pure HRL baseline STAR, as
shown in Fig. 6a, collapses frequently mid-training across
seeds. This instability indicates a lack of resilience: the
convergence of STAR is not guaranteed when learning such
a complex, long-horizon task without additional guidance.
Figure 6b shows that the LLM-only agent can reach moderate
success rates plateau without any dropping of performance,
demonstrating the potential of a pretrained planner to guide
exploration. However, the use of LLM-planner is too costly
and the learning process of LLM-only is four times slower
than the others, which limits the further use of LLM in
the top-level agent. Fig. 6d shows that SGIM-STAR demon-
strates remarkably consistent improvement across training,
with almost no catastrophic drops in performance. In con-
trast, the SGIM-STAR-IM variant also suffers abrupt perfor-
mance collapses after initial learning spurts from Fig,6c. This



(d) SGIM-STAR(c) SGIM-STAR-IM(b) LLM(a) STAR

Fig. 6: Successful rate of each run in (a) STAR, (b) LLM, (c) SGIM-STAR-IM and (d) SGIM-STAR.

suggests that state-space partitioning plays a critical role in
stabilizing long-horizon learning.

A key insight is that SGIM-STAR selectively shifts to
LLM guidance once it becomes beneficial. Early on, STAR’s
fast learning of basic navigation yields quicker gains, so
the agent heavily favors the STAR Commander policy.
As training progresses, the agent discovers a more refined
symbolic structure of the maze via partitions, it increasingly
relies on the LLM for top-level planning. Fig. 5a quantifies
this behavior: at the start of training, the fraction of top-
level choices directed by STAR is extremely high, as the
task structure emerges, this fraction steadily declines, and
by the end of training the agent chooses STAR for only one
third of decisions on average, indicating that it has shifted to
predominantly following the LLM’s guidance in later stages.
In other words, SGIM-STAR intelligently “chooses” STAR
in the beginning when the LLM’s abstract guidance might not
yet be enough, and then gradually transitions to the LLM as
the partitions learned by STAR provide a reliable framework
for planning. This adaptive scheduling of who controls the
top-level actions is crucial to achieving both high efficiency
and stability.

Another contributing factor to the robustness of the SGIM-
STAR is the growth of its state abstraction over time. During
training, the SGIM-STAR incrementally partitions the state
space into more regions as it encounters new situations. Fig.
5b tracks the number of partitions in each run over the course
of training. In effect, the partitioning mechanism provides
a form of symbolic memory that the LLM can leverage
which grounds the LLM’s planning in the agent’s learned
experience.

VII. DISCUSSION

After showing a possible parallel between natural language
instructions and internal representations, which hints at a
grounding of LLMs in an emergent representation, we in-
troduced SGIM-STAR which selectively combines an RL-
based planner with an LLM-based planner using a partition-
wise, progress-driven rule. Our analysis yields four key
characteristics of our method:

(1) Mutual stabilization and lighter planning. LLM
guidance stabilizes STAR by providing supplementary top-
level proposals when the RL-based planner becomes brittle,
while STAR makes the overall system lighter than an LLM-

only planner by supplying competent, inexpensive planning
during large portions of training. Overall, the RL-based
planner constitutes a bottom-up agent learning from its trial
and error with the environment, whereas the LLM planner
is a top-down agent sharing its internal world representation
to this specific task. Their combination mutualizes both a
bottom-up and a top-down process. The intrinsically mo-
tivated, progress-based selection between the two planners
improves learning progress and stabilizes performance.

(2) Cost-aware usage of the LLM. SGIM-STAR uses the
LLM only when necessary: calls to the LLM are conditional
on partition-wise progress and thus avoided when the STAR
Commander suffices. Compared to an LLM top-level agent,
this conditional usage reduces planner cost and latency while
still reaping the benefits of LLM exploration.

(3) Start planning with RL, then switch to LLM. The
agent relies more on a RL planner in the early phase—when
the internal representation is coarse—and gradually shifts
toward LLM guidance as the internal representation becomes
richer and more meaningful for language reasoning. This
indicates that a richer internal representation can offer a
better grounding of LLM planners.

(4) Formulation that enables language grounding.
Crucially, our learning formulation builds a discretized,
partitioned representation—from bottom-up RL experiences.
This evolving symbolic structure leverages LLMs to help
the learning process of the agent, by offering a grounded
correspondence of regions to LLM symbols.

VIII. CONCLUSION AND PERSPECTIVE

In this work, we investigated how LLMs can interact
with the emergent symbolic representations produced by
hierarchical reinforcement learning. Through translation ex-
periments in Ant Maze, we found that while LLMs can map
natural language instructions to coarse symbolic partitions,
their reliability decreases with finer granularity. Motivated
by this translation analysis, we proposed SGIM-STAR, a
simple, partition-wise progress-based algorithm that switches
between a STAR top-level planner and an LLM planner. This
design leverages the efficiency of RL in early stages and
selectively invokes LLM guidance in the later ones, since the
richer representation gives the LLM more meaningful inputs.
Experiments show that SGIM-STAR not only improves long-
horizon task success and stability over STAR but also reduces



the computational cost associated with LLM-only planning.
Our study suggests that LLMs and RL agents together can

solve more complex tasks than either alone. In future works,
we plan to extend this framework to real-world robotics
scenarios where humans instruct robots in natural language
during its learning process. Successfully transferring the
method to a robotic platform would validate its generality
and robustness, while highlighting any necessary adapta-
tions for real-world operation. Moreover, the cost-aware
switching mechanism introduced in SGIM-STAR demon-
strates a more efficient use of LLMs in planning – future
systems could dynamically invoke language-based planners
only when needed, keeping operation costs low. Finally, by
tackling more diverse tasks, the learned symbolic plan can
capture richer semantics, which enables the LLM planner to
interpret and execute a broader range of instructions, further
improving long-horizon performance.

Overall, our study demonstrates that emergent symbolic
representations can serve as a grounding substrate for lan-
guage, enabling LLMs to act both as translators of human
instructions and as adaptive planners. By unifying bottom-
up learning with top-down symbolic reasoning, SGIM-STAR
advances the development of language-grounded hierarchical
reinforcement learning for robotics, paving the way toward
more interpretable, robust, and human-interactive agents in
long-horizon tasks.
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